Comprehensive Analysis of Residual Solvents in Water-Soluble Articles Using Dynamic Headspace

Richard Lake and Frank Dorman Restek Corporation, Bellefonte, PA

Eric Heggs
Teledyne Tekmar, Mason, OH

Restek Corporation www.restekcorp.com

Background

•ICH (Q3C) lists 61compounds as residual solvent impurities classified by toxicity

Class 1 – should be avoided

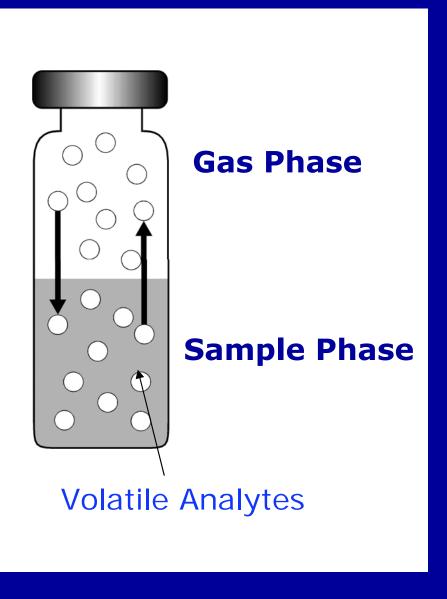
Class 2 – should be limited

Class 3 – can be assayed by non-specific techniques – LOD

- •USP <467> compendial method
- Selectivity
 — no single analytical column
- Analyte confirmation sometimes need multiple columns or MSD
- Sensitivity Static headspace

Great fit for application, not exhaustive or ideally sensitive

Scope



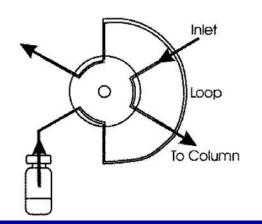
- 1. Example of Water Soluble Articles
- 2. Advantages of Dynamic Headspace (Sensitivity)
 - 1. Added sensitivity brings opportunity
 - 2. More representative sample
- 3. Comprehensive dual column FID analysis using Modulated Accelerated Column Heating (Selectivity and Confirmation)
 - 1. Enhance Selectivity confirmation analysis
 - 2. Enhance Sensitivity LOD
 - 3. Linearity & Range
 - 4. Reproducibility
 - 5. Time Saving

Headspace Analysis

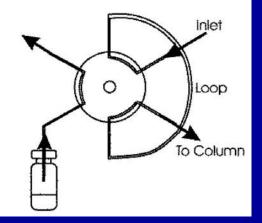
BASIC HEADSPACE CONCEPT

- A liquid or solid sample is heated in a sealed vial
- Equilibrium is established between the sample and the gas phase (headspace)
- Aliquot of the gas phase is transferred to the GC
- Not an exhaustive technique

Static Headspace

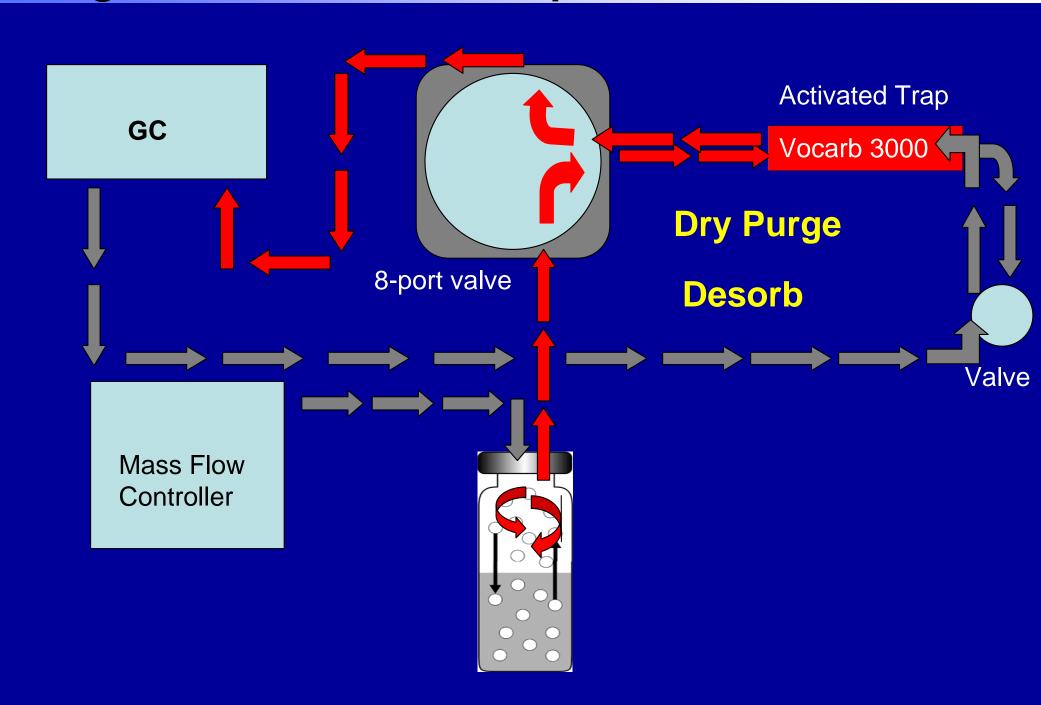


Pressurized Loop System


Step 1
Sample reaches
equilibrium/pressurization

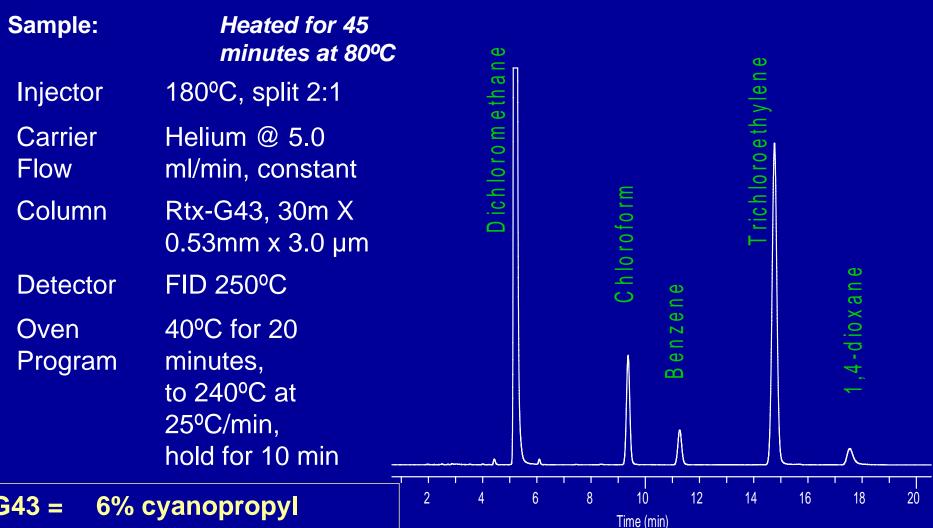
Inlet Loop
To Column

Step 2
Sample is extracted from headspace


Step 3
Sample is injected

- Only a portion of the headspace is sampled
- Not optimizing sensitivity

Dynamic Headspace



Static vs. Dynamic

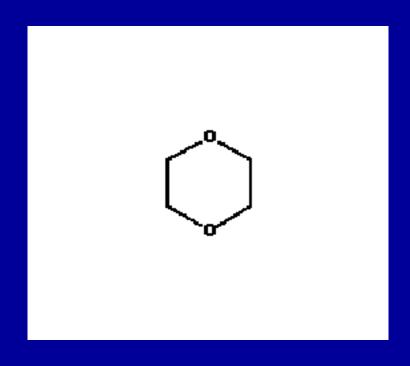
Direct Sensitivity Comparison Using USP <467> Solvents

Instrument Conditions USP <467>

G43 =94% dimethylpolysiloxane

Static vs. Dynamic

Sensitivity Comparison Using USP <467> Solvents


	Average Peak Area					
Analyte	Sample Conc (ppm)	Reg Limit (ppm)	Static Headspace	Dynamic Headspace	Increase in Sensitivity	
Dichloromethane	12.0	600	619	18679	30 X	
Chloroform	1.2	60	39	783	20 X	
Benzene	0.04	2	15	313	21 X	
Trichloroethylene	1.6	80	141	3479	25 X	
1,4-dioxane	7.6	380	20	272	13 X	

Average increase in sensitivity = 22X

Response of Polar Analyte

Why is the increase lower for 1,4-Dioxane?

Increase in sensitivity is only 13X

- Very hydrophilic compound
- Poor partitioning
- Indicates that partitioning is not the same for all compounds
- Similar for alcohols, ketones, aldehydes

Class 1 and 2 Solvents

Table I Class 1 solvents (should be avoided).			Table II Class 2 solvents.			
Solvent	Concentration limit (ppm)	Associated hazard	Solvent	Concentration limit (ppm)		
Benzene	2	Carcinogen	Acetonitrile 🛑	410		
Carbon tetrachloride	4	Toxic and environmental hazard	Chlorobenzene (360		
1,2-Dichloroethane	5	Toxic	Chloroform -	60		
1,1-Dichloroethene	8	Toxic	Cyclohexane	3880		
1,1,1-Trichloroethane	1500	Environmental hazard	Dichloromethane —	600		
			(methylene chloride)			
			1,4-Dioxane	380		
			1,1,2-Trichloroethylene	80		
• 1 • • • • • • • • • • • • • • • • • •	d Class 2 I	Mix A and D	1,2-Dimethoxyethane	100		
•Assaye	u Class 2 i	Mix A and B	2-Ethoxyethanol	160		
on G43			2-Methoxyethanol	50		
			Methylbutyl ketone	50		
of mal Tot	al Valuma	1 a Codium	Nitromethane —	50		
•01111 101	ai voiume	, 1 g Sodium	Sulfolane	160		
Sulfate i	n 20 ml via	al	Tetralin	100		
			Pyridine	200		
al con of	rogulator	v limit /1 ml	Toluene	890		
*Loop at	regulator	y limit (1ml	Formamide	220		
standard	d added)		1,2-Dichloroethene	1870		
			N,N-Dimethylacetamide	1090		
•Tran at	1/ regulate	sry limit	N,N-Dimethylformamide	880		
	1/2 regulato		Ethylene glycol	620		
(500ul st	tandard ad	ded and	Hexane	290		
•			Methanol	3000		
increase	ed split rati	0)	Methylcyclohexane	1180		

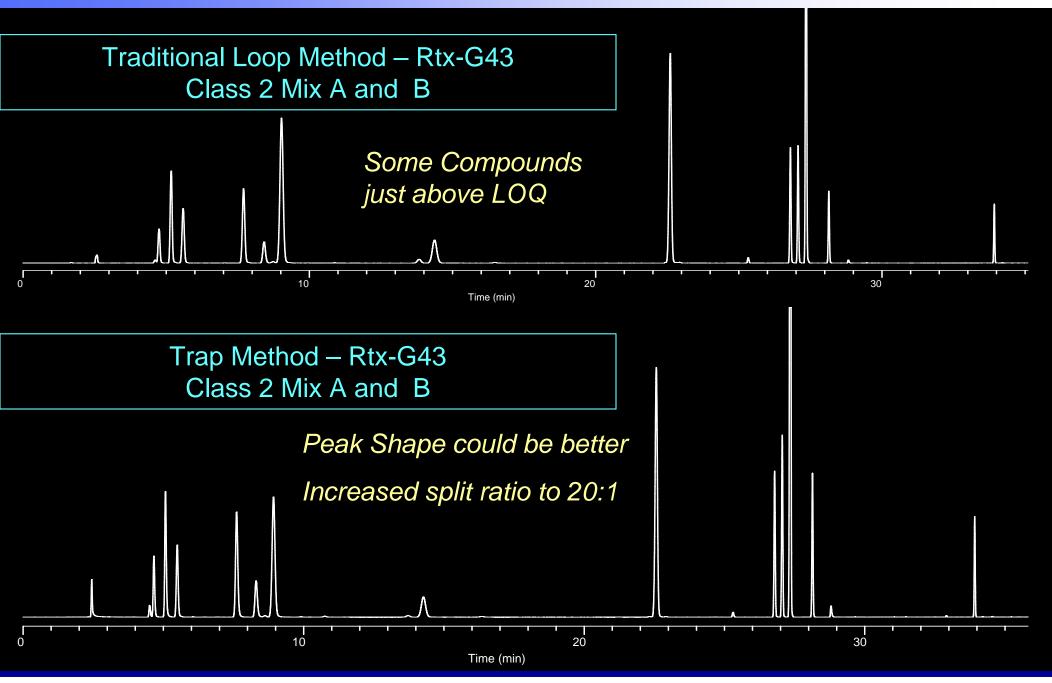
N-Methylpyrrolidone

Xylene

4840

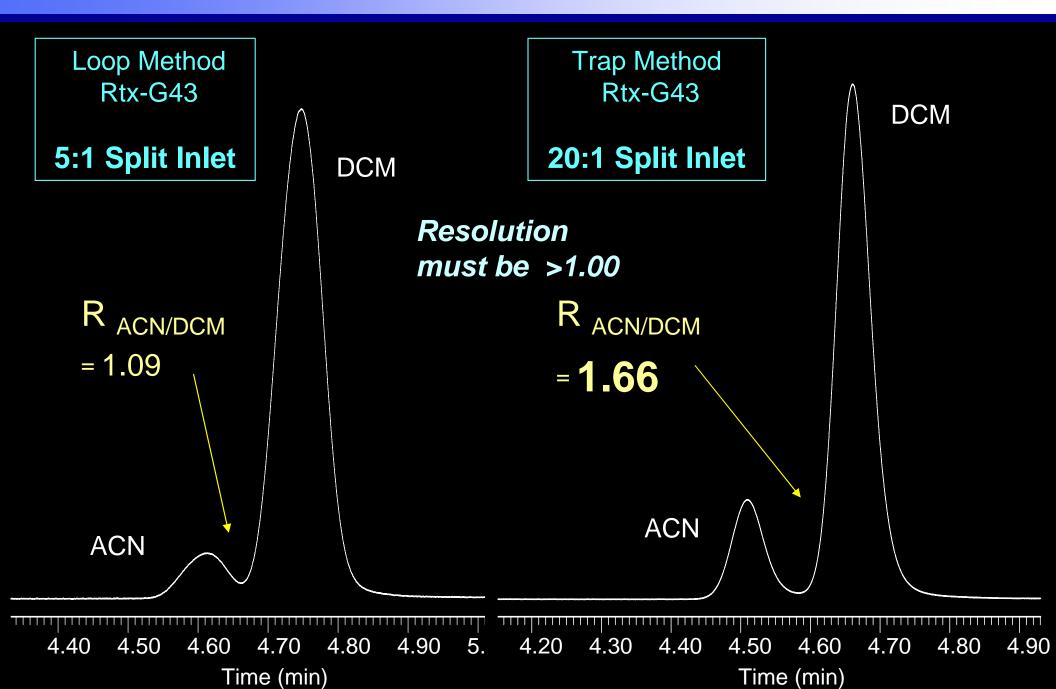
2170

Analyte List



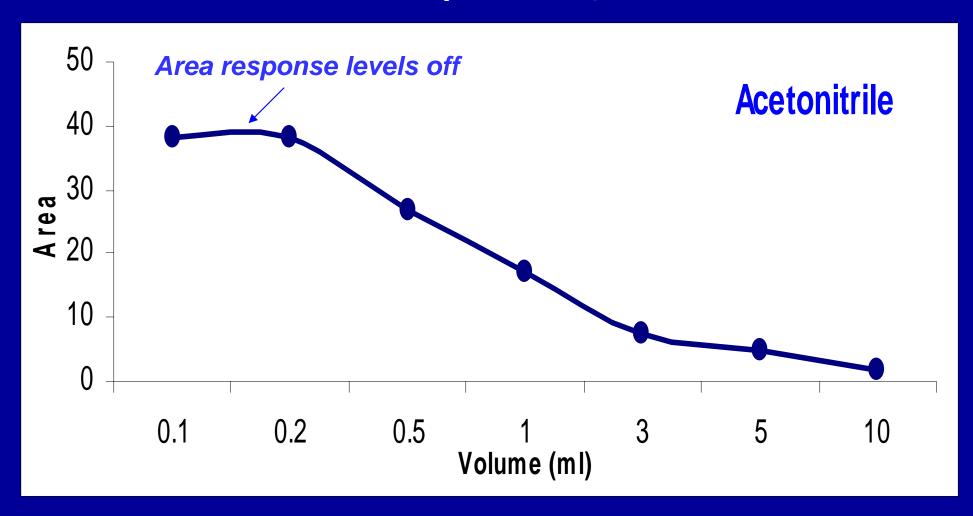
- Methanol
- 2. Acetonitrile
- 3. Dichloromethane
- 4. trans-1,2-Dichloroethylene
- 5. Hexane
- 6. cis-1,2- Dichloroethylene
- 7. Nitromethane
- 8. Tetrahydrofuran
- 9. Chloroform
- 10. Cyclohexane
- 11. 1,2-Dimethoxyethane
- 12. Trichloroethylene
- 13. Methylcyclohexane
- 14. 1,4-Dioxane
- 15. Pyridine
- 16. Toluene
- 17. 2-Hexanone
- 18. Chlorobenzene
- 19. Ethyl benzene
- 20. m-Xylene
- 21. p-Xylene
- 22. o-Xylene
- 23. Tetralin

23 solvents with varying chemical properties


Static vs. Dynamic – A closer look

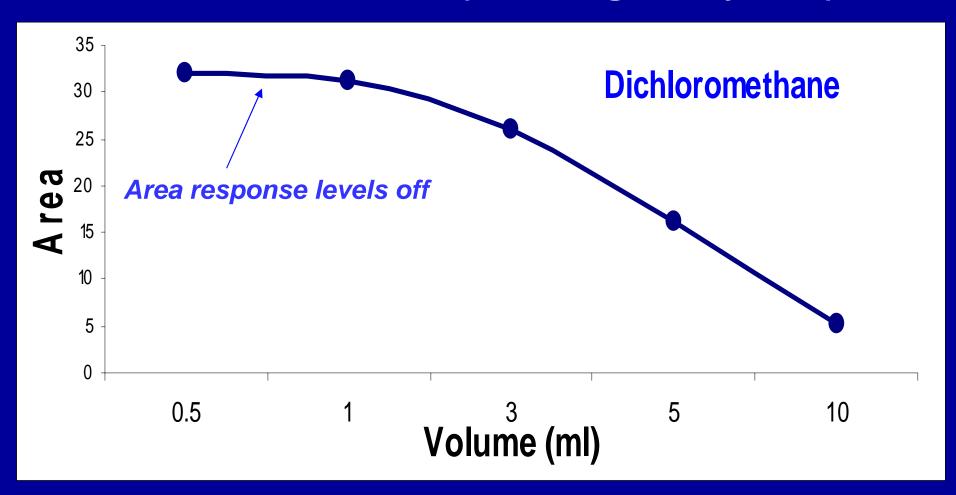
Increased Split Flow

Sensitivity Comparison



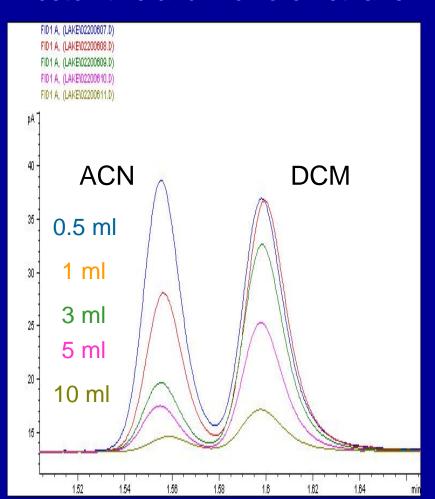
Compound	Polarity	Static A	Static Analysis		Dynamic Analysis at ½ Conc.		Increase (times)	
		Peak Area	Peak Height	Peak Area	Peak Height	Peak Area	Peak Height	
Methanol	Polar	44.57097	9.68596	235.03558	83.45882	5.3	8.6	
Acetonitrile	Polar	16.65052	3.79775	89.66702	26.12947	5.4	6.9	
1,4-dioxane	Polar	6.83236	0.63490	14.84858	1.35838	2.2	2.2	
MBK	Polar	21.91312	6.59006	35.65511	10.61567	1.6	1.7	
DCM	Slightly	190.38097	41.14470	497.52942	135.51151	2.6	3.3	
Hexane	Non	356.69006	65.75023	714.94470	160.13466	2.0	2.5	
Calculated Average Increase of all Analytes Using ½ Conc.					5.6	6.0		
			Average	22	24			

Same average increase as noticed before Same uneven partitioning

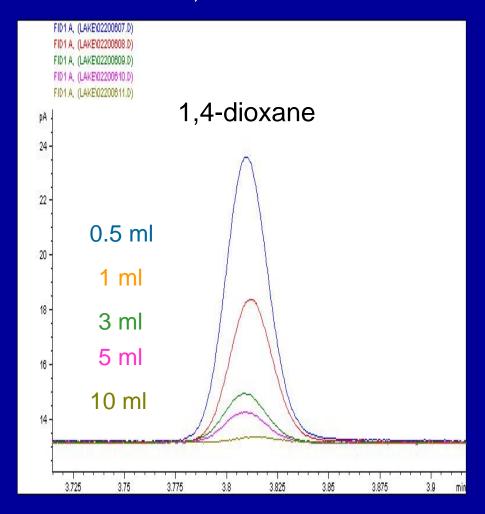

Polar Solvent (1/5 of regulatory limit)

Area of analyte increases as volume of sample decreases

Less Polar Solvent (1/5 of regulatory limit)



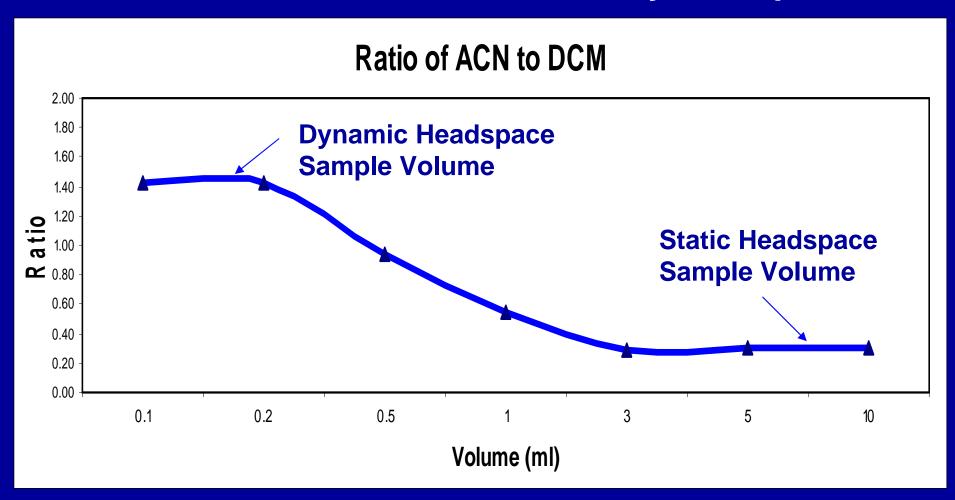
Area of analyte decreases as volume of sample increases



Effect of Phase Ratio on Analyte Response

Acetonitrile and Dichloromethane

1,4-dioxane



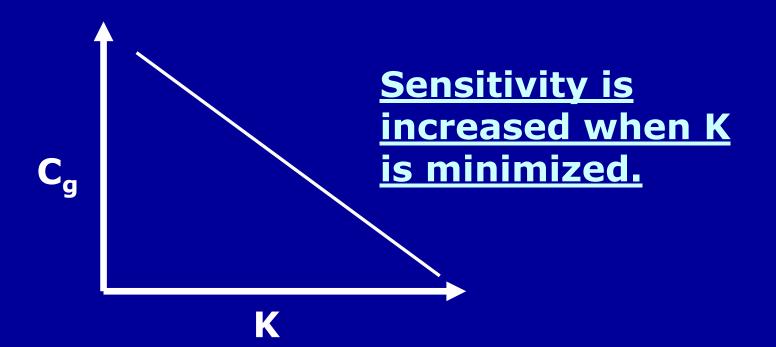
10 ml to 0.5 ml range

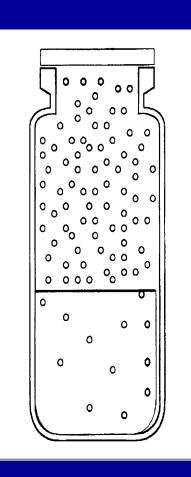
10 ml to 0.5 ml range

Effect of Phase Ratio on Analyte Response

Smaller sample volumes are more representative of polar compounds and give better sensitivity

Partition Coefficient

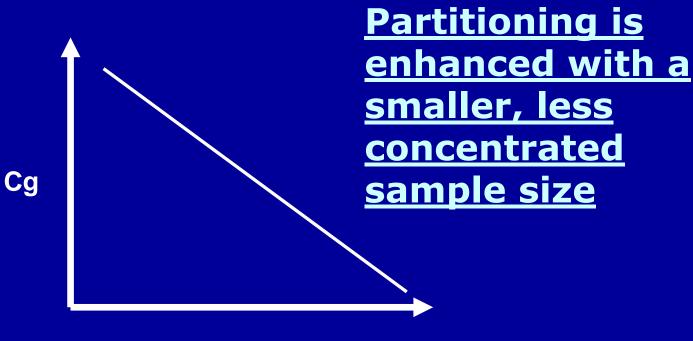


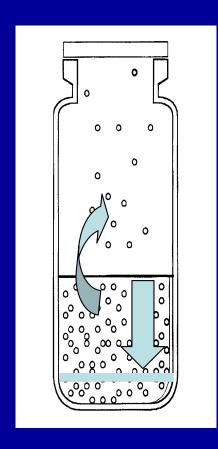

Traditional Headspace Theory - Loop

Partition Coefficient (K) = C_s/C_g

 C_s = Concentration of analyte in sample phase

 C_q = Concentration of analyte in the gas phase



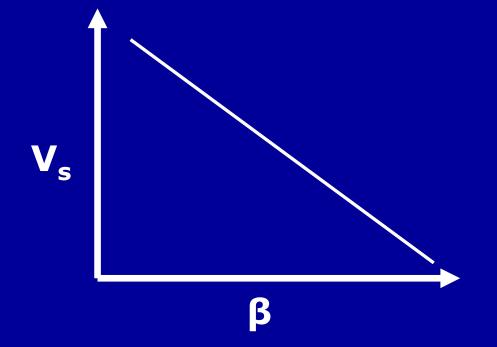

Partition Coefficient

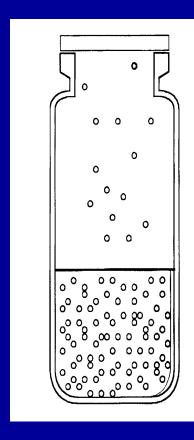
Headspace Trap Theory

K is minimized as the volume of sample and standard decreases,

80°C- 90°C ceiling for platen temp

Increasing Sensitivity

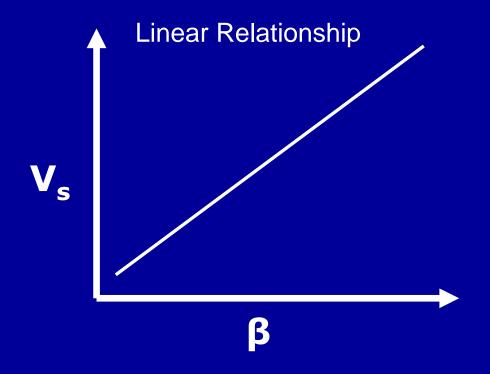



Traditional Headspace Theory - Loop

Phase Ratio (β) = V_g/V_s

 V_a = Volume of the gas phase

 V_s = Volume of the sample phase


Sensitivity is increased when β is minimized.

Increasing Sensitivity

Headspace Trap Theory

Phase Ratio (B) is now the reciprocal as an increased gas phase does not dilute sample

<u>Sensitivity is</u> <u>increased when ß</u> <u>is maximized.</u>

Dynamic Headspace

Advantages:

- 1. Large Increase in Sensitivity
- 2. More Representative Sample
- 3. Smaller Volumes = Smaller Sample Sizes

= Faster sampleequilibrium times

Makes Possible:

- 1. More Versatility in Instrument Conditions
- 2. Dual Column FID Method for Analyte Confirmation using two alternatively selective columns

Headspace Conditions

Dynamic Headspace (Trap) Conditions					
Instrument	Teledyne Tekmar HT3				
Valve Oven Temp	220°C				
Transfer Line Temp	220°C				
Standby Flow Rate	50 ml/min				
Trap Standby Temp	40 °C				
Platen/Sample Temp	80 °C				
Sample Equil. Time	15.00 min				
Mixer Time	2.00 min				
Mixing Level	5				
Mixer Stabilize Time	0.50 min				

Sweep Flow Rate	75 ml/min
Sweep Flow Time	5.00 min
Dry Purge Time	10.00 min
Dry Purge Flow	100 ml/min
Dry Purge Temp	25°C
Desorb Preheat	245 °C
Desorb Temp	250°C
Desorb Time	1.00 min
Trap Bake Temp (K)	260°C
Trap Bake Time	6.00 min
Trap Bake Flow	450 ml/min

Dual Column Assay

Instrument Agilent 6890 GC/FID

Injector, Split 220°C

Mode

Split Ratio 20:1

Column Flow Helium, constant flow,

split into two columns

A: 1.5 ml/min

B: 1.6 ml/min

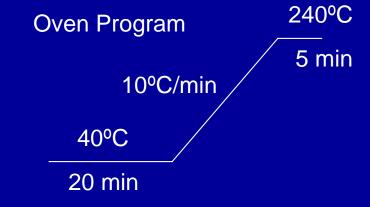
Column A: Rtx-G43, 30m X 0.32mm x 1.8 μm

B: Stabilwax, 30m X 0.32mm x 1.0 μm

Detector, FID 250°C

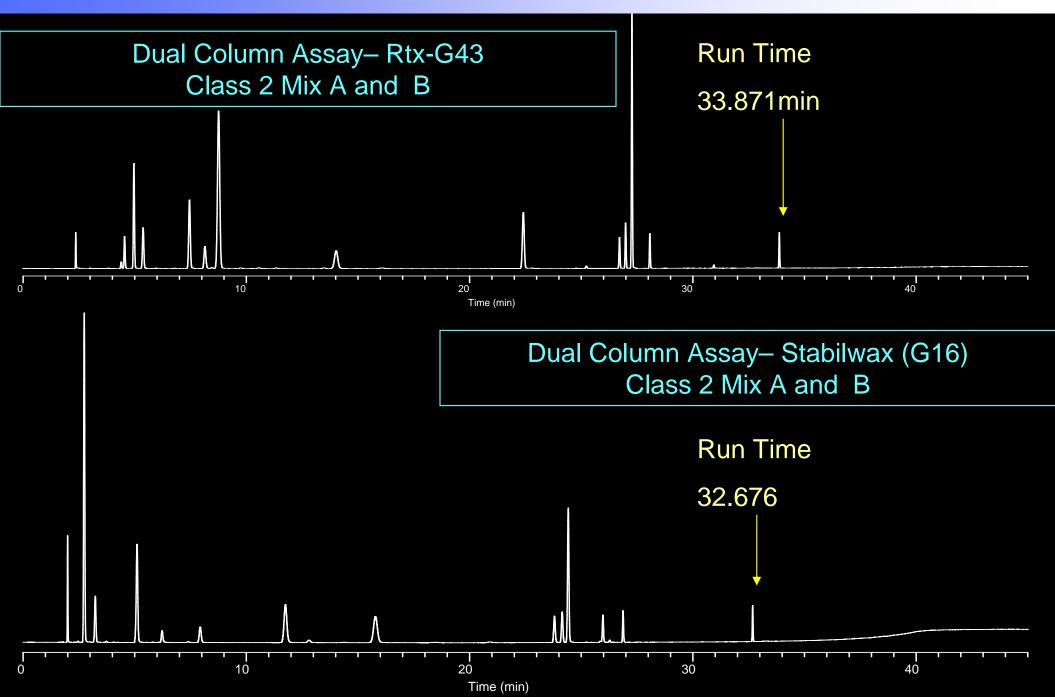
Hydrogen 40 ml/min

Air 450 ml/min


Make-up 45 ml/min

G43 = 6% cyanopropyl

94% dimethylpolysiloxane


G16= 100% Polyethylene

glycol (PEG)

Dual Column Assay

Dual Column Assay

Coelutions:

G43

- 1. Cis-1,2-dichloroethane / Nitromethane
- 2. Pyridine / Toluene
- 3. m-xylene / p-xylene (critical)

G16

- 1. Tetrahydrofuran / Trans-1,2-dichloroethane
- 2. Cis-1,2-dichloroethane / Trichloroethylene (critical)
- One oven hinders selectivity
- Lengthy run times

Instrument Configuration

Instrument Configuration

Comprehensive Method

Headspace Method – same as previous

0.5 ml and 1 ml total volume in 20ml headspace vial

Instrument Agilent 6890 GC/FID/FID

Injector, Split Mode 220°Cm split ratio 20:1

Column Flow Helium, constant flow, split into two columns (0.32mm guard)

Oven Program 220°C

Column A (G43) - Rtx-624

20m x 0.18mm x 1.0µm

Flow: 0.85ml/min

Oven Program

40°C/min 200°C | 80°C | 120 sec

50°C 60 sec

120 sec

FID A - 250°C

Hydrogen 40ml/min Air 450 ml/min Makeup (He) 45 ml/min Column B (G16) – Rtx-WAX

20m x 0.18mm x 0.4µm

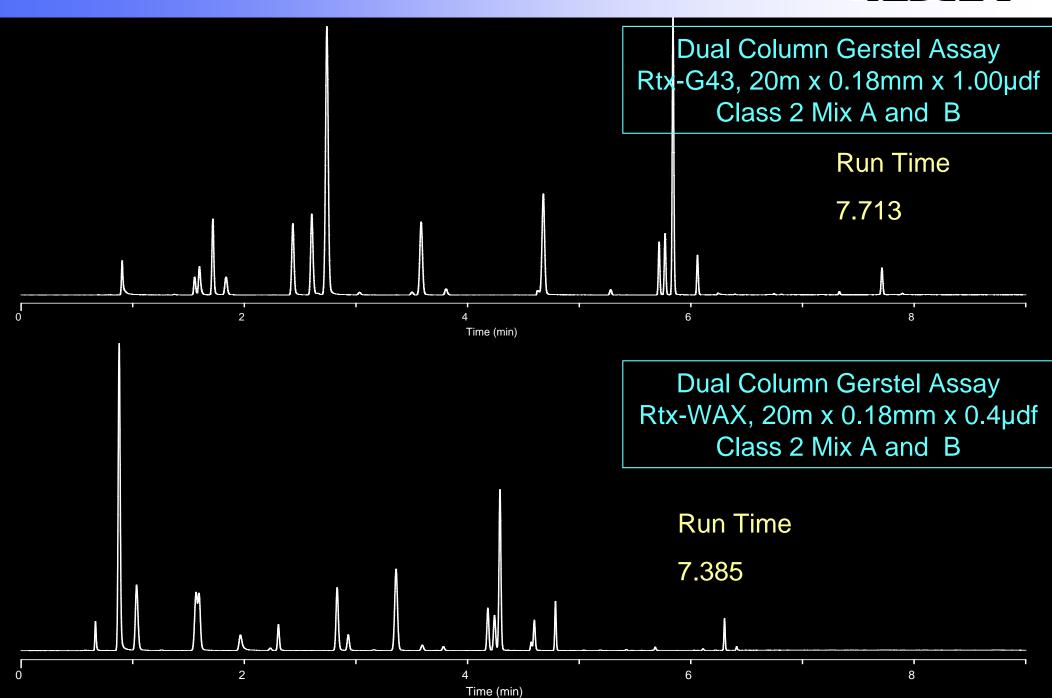
Flow: 0.99ml/min

Oven Program

40°C/min 200°C 60°C 120 sec

100°C/min 60 sec

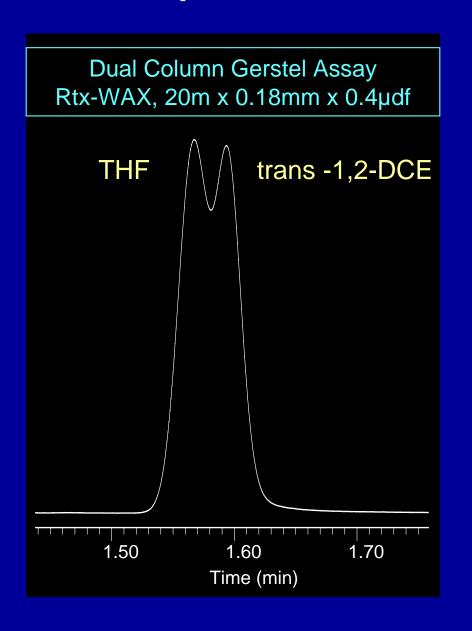
120 sec

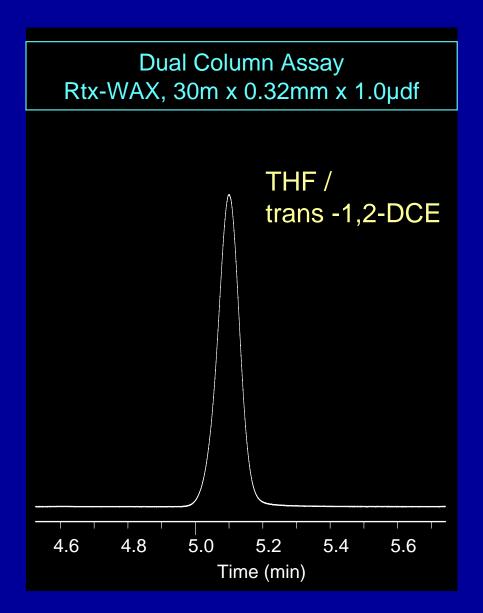

FID B - 250°C

Hydrogen 40ml/min
Air 450 ml/min

Makeup (He) 45 ml/min

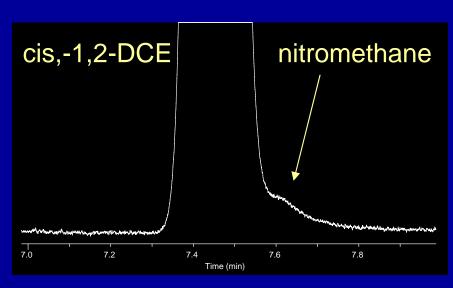
Method Results

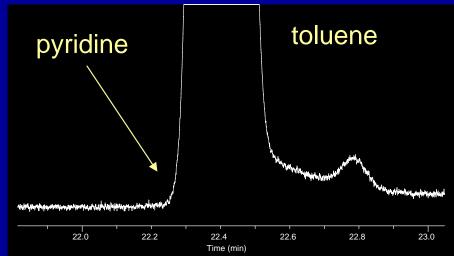


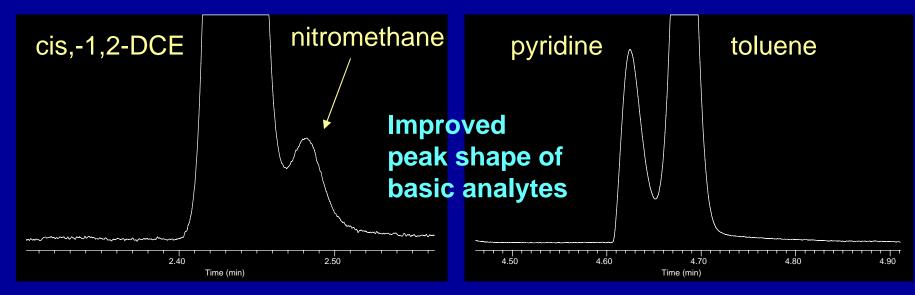


Method Selectivity

Equal or Enhanced Selectivity – G16




Method Selectivity


Equal or Enhanced Selectivity – G43

Dual Column 30m x 0.32mm x 1.0µdf

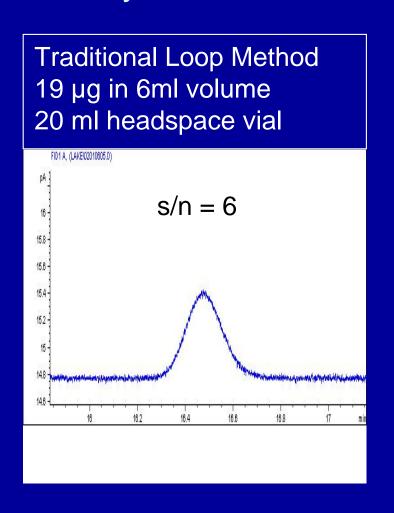
Dual Column Gerstel 20m x 0.18mm x 0.4µdf

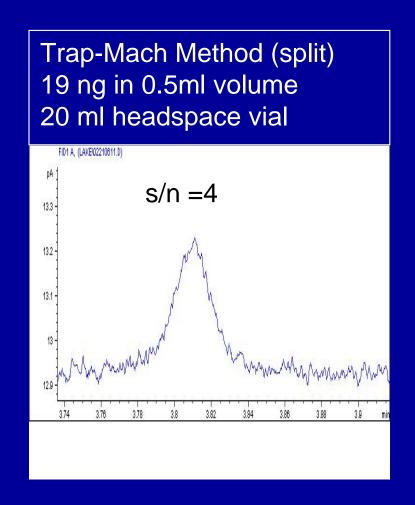
Method Sensitivity

Sensitivity Comparison Using Peak Height

Method	Sample Volume	Average Increase of all Analytes
Standard Loop	6 ml	
Standard Trap	6 ml	24 X
Gerstel Dual Column Assay	1 ml	313 X

Effect of Polarity on Sensitivity


Solvent	Polarity	Increase
Methanol	Polar	711 X
Acetonitrile	Polar	801X
MBK	Polar	79X
DCM	Slightly Polar	74X
Hexane	Non Polar	29X


Cumulative effect of trapping, sample volume, and peak height increase using microbore columns

Method LOD

Sensitivity of 1,4-dioxane as a function of signal-to-noise

All factors considered, approximately a 700 fold increase in signal response for polar compounds, even when column flow is split

Method Linearity and Range

1 ml Sample Volume

Linearity -in 20ml headspace vial

Correlation Coefficient >0.994 for all analytes

Average Correlation Coefficient = 0.9984

Range – various low responders - 1,4-dioxane = 0.19µg to 1.9µg

- MBK = $0.03\mu g$ to $0.3\mu g$

0.5 ml Sample Volume

Linearity -in 20ml headspace vial

Correlation Coefficient >0.995 for all analytes

Average Correlation Coefficient = 0.9982

Range – various low responders - 1,4-dioxane = 0.019µg to 0.76µg

- MBK = $0.003\mu g$ to $0.12\mu g$

Method Reproducibility

Acetonitrile Reproducibility 40µl of standard / 0.5ml sample 1.64µg/ml or 4% of reg limit @ reg limit using 10mg sample Dichloromethane Reproducibility
40µl of standard / 0.5ml sample
2.40µg/ml or 4% of reg limit
@ reg limit using 10mg sample

Rep	Solvent	Peak	Peak	RT	Rep	Solvent	Peak	Peak	RT
		Area	Height	(min)			Area	Height	(min)
1	ACN	37.8979	32.92955	1.556	1	DCM	40.34903	28.88841	1.599
2	ACN	35.9404	31.11098	1.556	2	DCM	41.48586	30.95327	1.599
3	ACN	37.76856	32.61021	1.554	3	DCM	40.88852	30.27963	1.557
4	ACN	37.16529	31.81859	1.555	4	DCM	41.47880	30.21242	1.557
5	ACN	35.05855	30.41616	1.554	5	DCM	41.25531	30.57424	1.557
6	ACN	38.60516	33.66129	1.553	6	DCM	41.12213	30.62504	1.556
	Avg	37.0726	32.0911	1.555		Avg	41.0966	30.422	1.598
	Std Dev	1.331	1.207	0.001		Std Dev	0.430	0.373	0.001
	%RSD	3.591	3.760	0.078		%RSD	1.047	1.226	0.077

Method Time

USP method:

2 sample preparations at 60 minutes each

= 2 hours/sample

Headpspace Trap with MACH:

1 sample preparations

= 33 minutes /sample

(Limited by headspace analysis)

Approximate reduction of 1.5 hours / sample

Conclusion

- Better sensitivity sample sizes of 25mg to 10mg possible
- Selectivity and Confirmation -Choosing two columns with alternate selectivity gives analyte confirmation for all ICH compounds
- More representative analysis of polar compounds
- Shorter analysis and sample equilibration times Higher throughput

Thank You