Restek Corporation Performance Coatings

Restek Corporation Background

- Established in 1985 as gas chromatography supplies company
- Currently \$25M+ annual revenue, double-digit growth 16 of 18 years
 - GC columns and consumables
 - Chemical standards
 - LC columns and consumables
 - Air analysis canisters and supplies
 - Performance Coatings Division

Performance Coatings Background

- Began with tubing in 1987
- Stand-alone parts in 1993
- Initial goal to impart the inertness of glass on a steel surface (Silcosteel®)
- New surfaces in 1997 expanded applicability and performance (Siltek™)
- Patent protection
- Concerted development effort launched in 2002

What can we coat?

- Tubing:
 - 0.004" to 0.5" ID
 - 2000+ ft. continuous lengths
- Complex geometry parts (inside and out)
 - Fittings, valves, frits, custom parts
 - Largest vessel: 1' ID x 4' cylinder w/ 10" opening
- Substrates
 - Stainless steels, steels, alloys, glass, ceramics

What can't we coat?

- Nickel (most high-performance alloys will coat)
- Aluminum*
- Copper
- Brass
- Gold, Silver-plated components
- Magnesium
- Elastomers

*heat-dependent

Basic Manufacturing Process

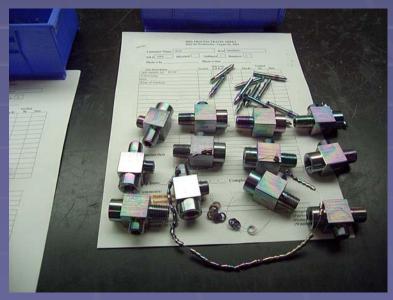
- Receive items
- Document digital, customer contact
- Clean
 - Standard: caustic ultrasonic bath, 2 systems
 - Custom: solvation via other means
- Process
 - Vacuum
 - 400°C
 - Chemical vapor deposition, silicon-based
- Clean
- Document digital, customer contact
- Pack, ship

Application Areas

- Analytical (passivation): Silcosteel[®],
 Siltek[™], Sulfinert[™]
 - Transfer lines
 - Instrumentation parts
 - GC consumables
- Anti-Coking: Silcosteel®-AC
- Anti-Corrosion: Silcosteel®-CR
- Ultra-High Vacuum: Silcosteel®-UHV

Coating Appearances (cont.)

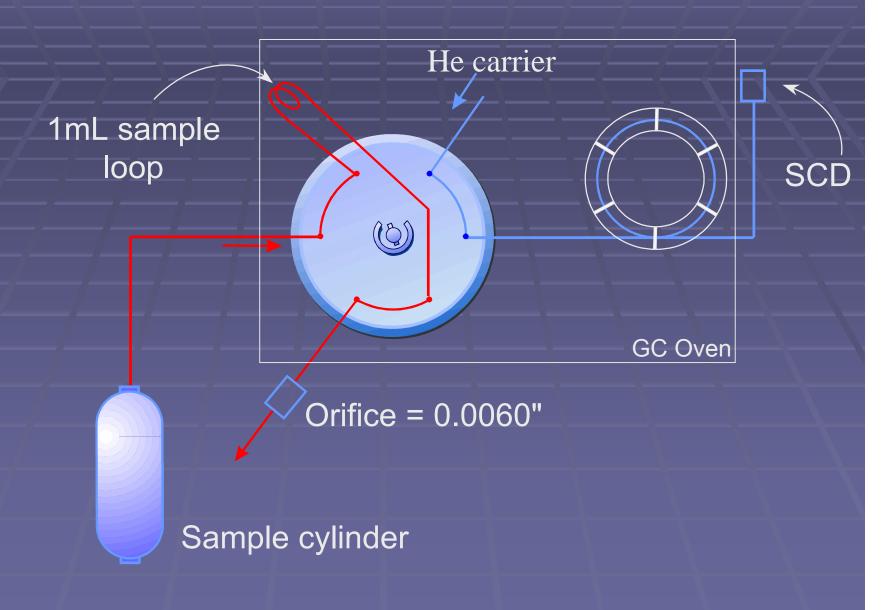
New Process Oven



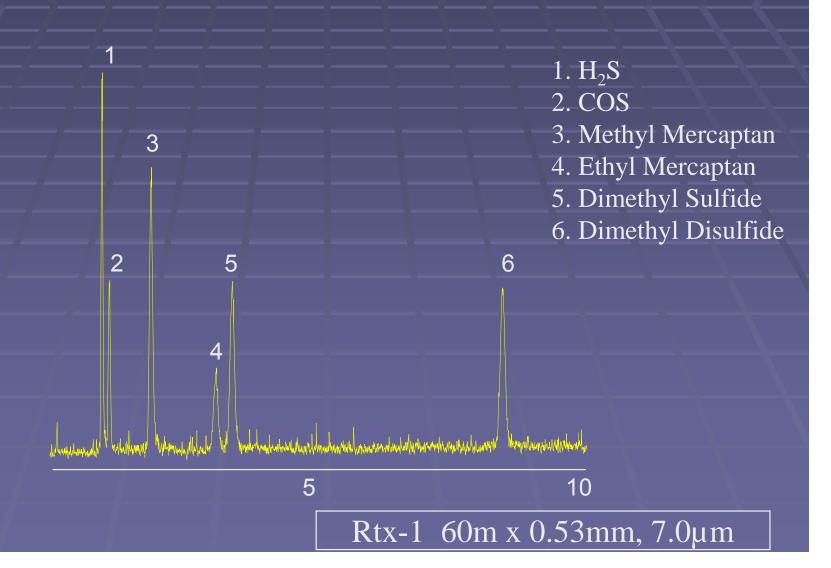
More Parts

Inertness

- Application: Reduce activity of substrate (ie., stainless steel) to minimize adsorption of compounds
- Coated system products deliver better reproducibility and accuracy by reducing hold-up of active compounds
- List of some active compounds: Hydrogen Sulfide, Nitrous Oxides, Mercury, Alcohols, Aldehydes, Ketones, etc.,.


Project Objective

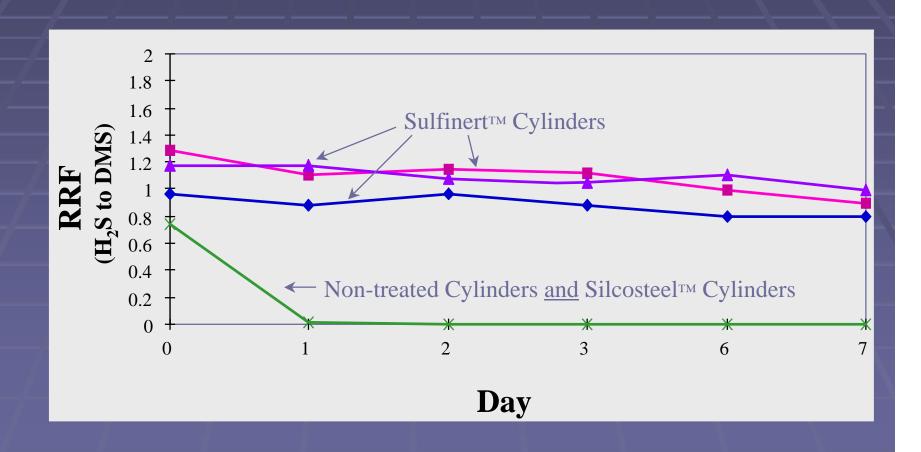
- To create passivation processes for stainless steel and glass surfaces which will allow the analysis of lowppbv sulfur gases
 - Chromatographic sampling system
 - Containment vessels (high pressure vessels and air sampling canisters)


Testing System for Sulfur Gas Storage & Transfer

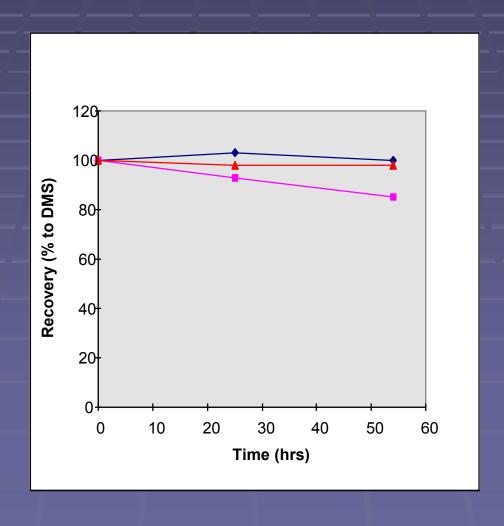
- Sulfinert™-deactivated sample cylinders with Sulfinert™ sample valves
- Sulfinert™-deactived sampling system (transfer line, sampling valve, 1ml sample loop)
- 48hr (minimum) containment of dry sample
- 55ppbv reference standard
- Dimethyl sulfide internal standard

Complete Sulfur Analysis System

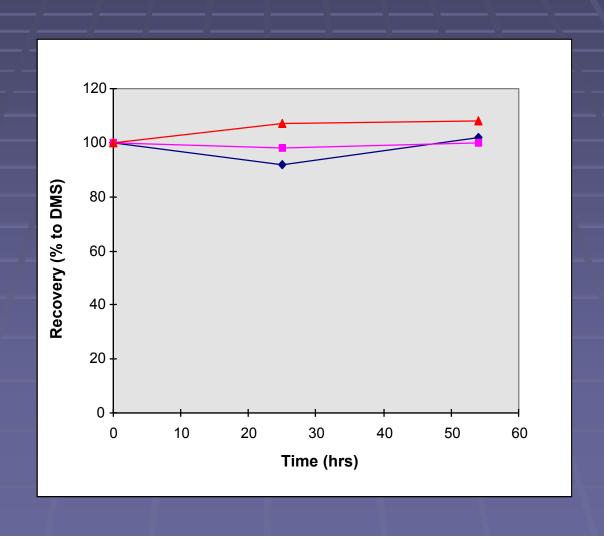
11ppbv Sulfur Standard

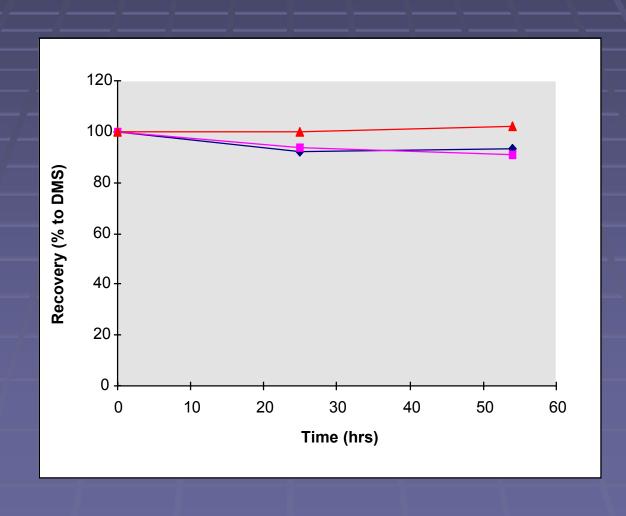

List of Sulfur Compounds

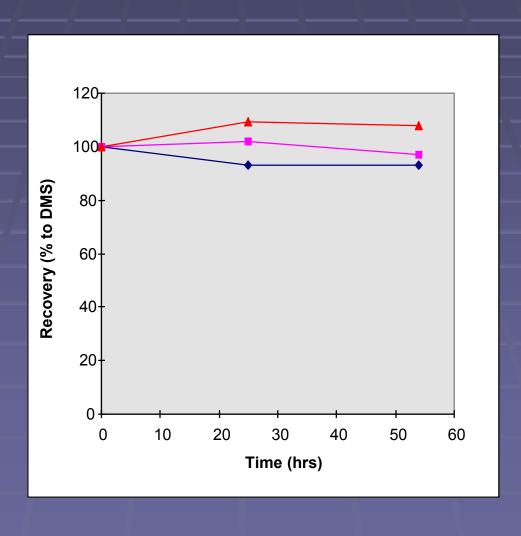
		Conc	Conc	Conc as S
Compound Name	Formula	(ppmv)	(ppbv)	(ppbv)
hydrogen sulfide	H2S	105	11.51	10.83
carbonyl sulfide	COS	98	10.74	5.73
methyl mercaptan	CH3SH	101	11.07	7.38
ethyl mercaptan	CH3CH2SH	101	11.07	5.71
dimethylsulfide	CH3SCH3	99	10.85	6.81
dimethyl disulfide	CH3SSCH3	100	10.96	7.46

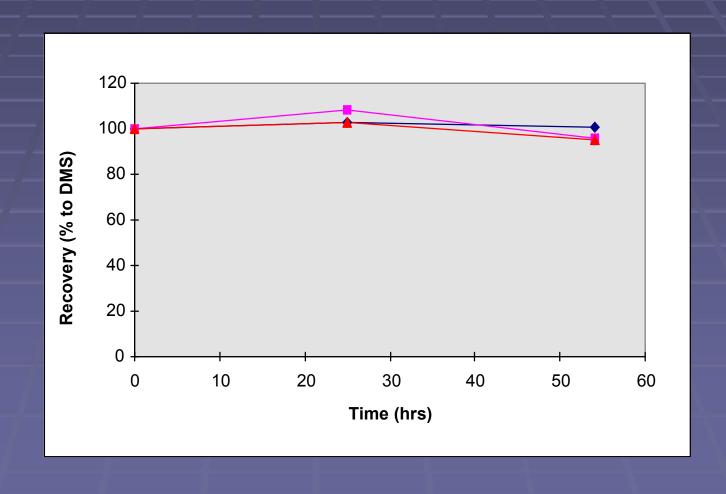

System Repeatability

Compound Name	%RSD
hydrogen sulfide	2.2
carbonyl sulfide	4.2
methyl mercaptan	2.0
ethyl mercaptan	8.7
dimethylsulfide	3.3
dimethyl disulfide	9.2

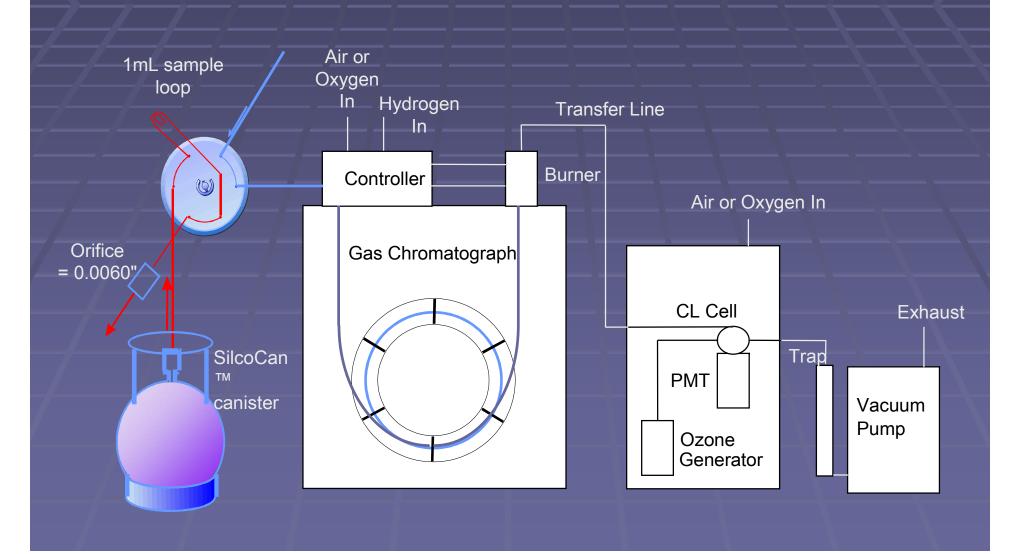

17ppbv H₂S Containment in 500ml Cylinders


H₂S at 27.57ppbv in 300ml Sulfinert™ Cylinders


COS at 14.59ppbv in 300mlSulfinert™ Cylinders

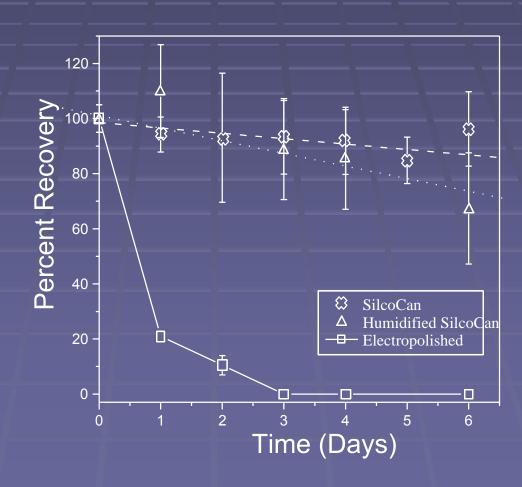

Ethyl Mercaptan at 14.53ppbv in 300ml Sulfinert™ Cylinders

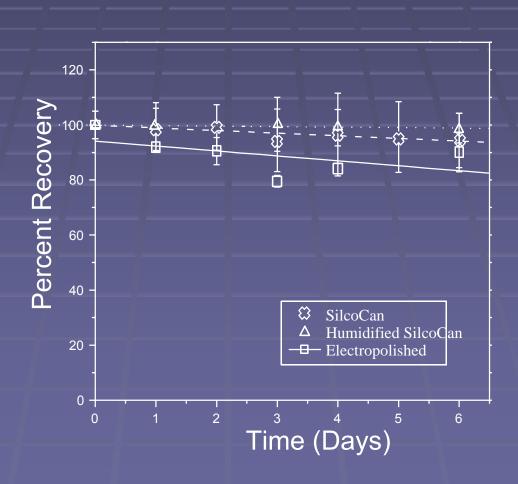
Methyl Mercaptan at 18.8ppbv in 300ml Sulfinert™ Cylinders


Dimethyl Disulfide at 18.99ppbv in 300ml Sulfinert™ Cylinders

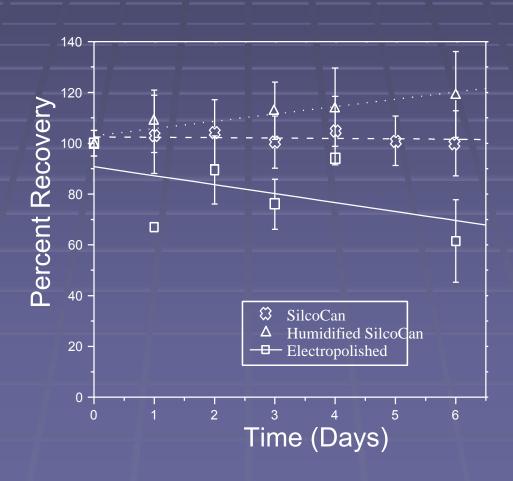
Ambient Air Sampling Canisters Objective

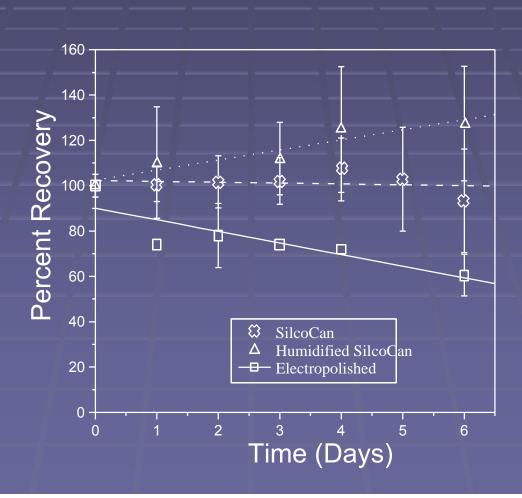
Demonstrate suitability for storage of low level (1-20ppbv) sulfurs in SilcoCan™ canisters.

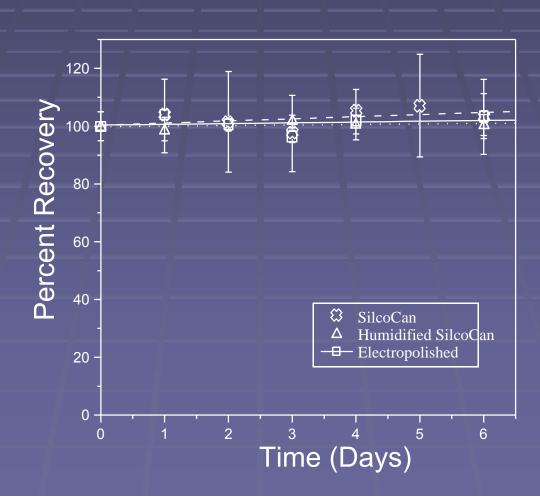

Block diagram of Analytical System


Stability Study Test

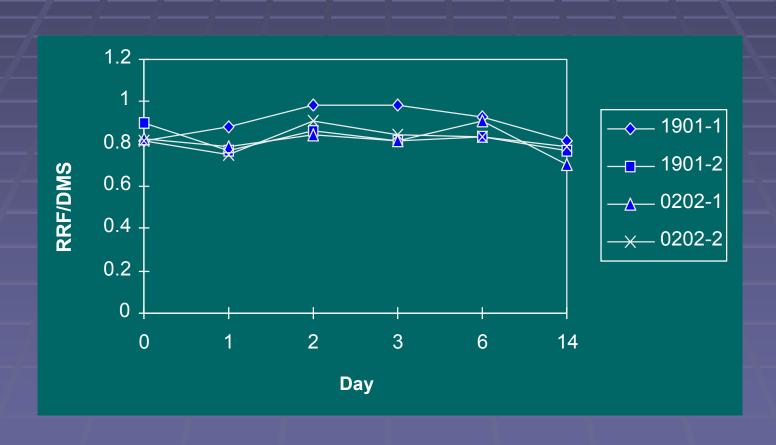
- 11ppbv
- 6 days stability study
- Reference std is at 55ppbv
- Dimethyl sulfide as internal standard
- SilcoCans (n=18)
- Humidified (rh=50%) SilcoCans (n=5)
- Electropolished Cans (n=2)


H₂S at 11ppbv in 6l Air Sampling Cans


COS at 10ppbv in 6l Air Sampling Cans

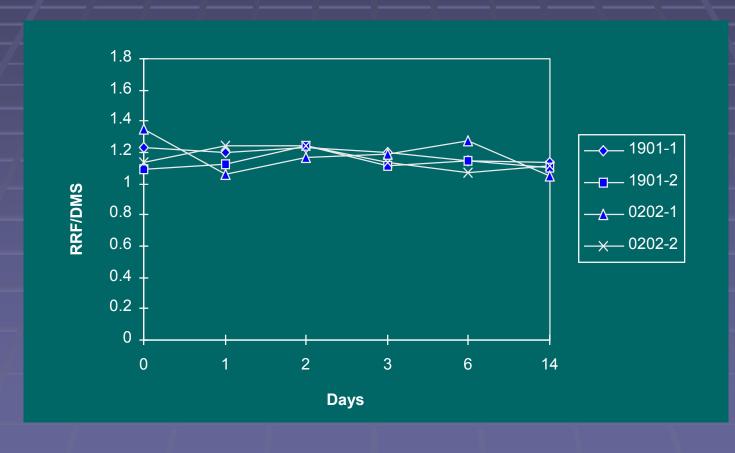

Methyl Mercaptan at 11ppbv in 6l Air Sampling Cans

Ethyl Mercaptan at 11ppbv in 6l Air Sampling Cans


Dimethyl Disulfide at 11ppbv in 6l Air Sampling Cans

Extended Stability Study

- Is the SilcoCan capable of storing 11ppbv sulfurs longer than 6 days?
- Tested 4 SilcoCans on Day 14


H₂S at 11ppbv for 14 days

COS at 10ppbv for 14 Days

Methyl Mercaptan 11ppbvfor 14 Days

Performance of Silcosteel® Coating for transfer of NO_x & Ammonia containing streams

- Study conducted by University of California Center for Environmental Research and Technology (October 2001)
- Study focused on quantifying uncertainties in continuous emission monitoring systems
- Study tried to simulate exhaust gas
- Total NO_x levels in study were 0.4ppm, 2ppm and 9.5ppm total
- Dry, wet, and with ammonia

NO_x Study Conditions

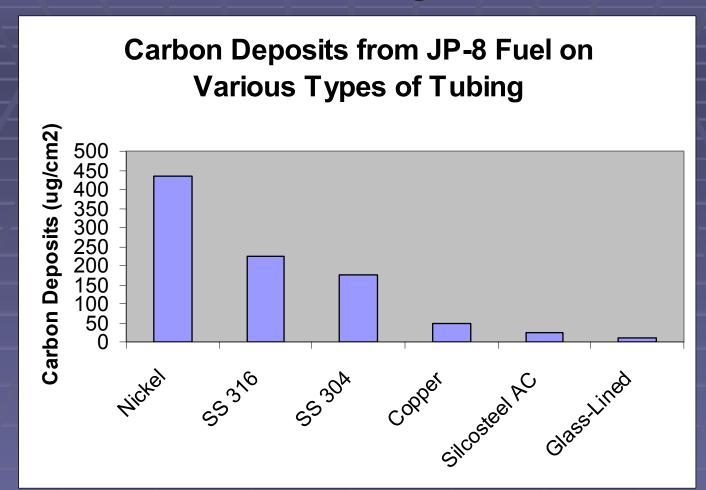
- 100' section of ¼" Silcosteel[®] coated tubing used to transfer Simulated Exhaust Streams
- Looking at recovery of components through the transfer system and relative standard deviation

NO_x Containing Sample Streams Studied

- Variety of components and concentrations studied:
- Each Condition tested with 3 NO_x concentrations 0.4ppm, 2ppm and 9.5ppm total NO_x
 - Dry Simulated Exhaust
 - Wet (13%H20) Simulated Exhaust
 - Wet (13% H20) Simulated Exhaust + 6ppm Ammonia
 - Wet (13% H20) Simulated Exhaust + 10ppm Ammonia
 - Wet (6% H20) Simulated Exhaust
 - Wet (6% H2O) Simulated Exhaust + 10ppm Ammonia

Results from Study

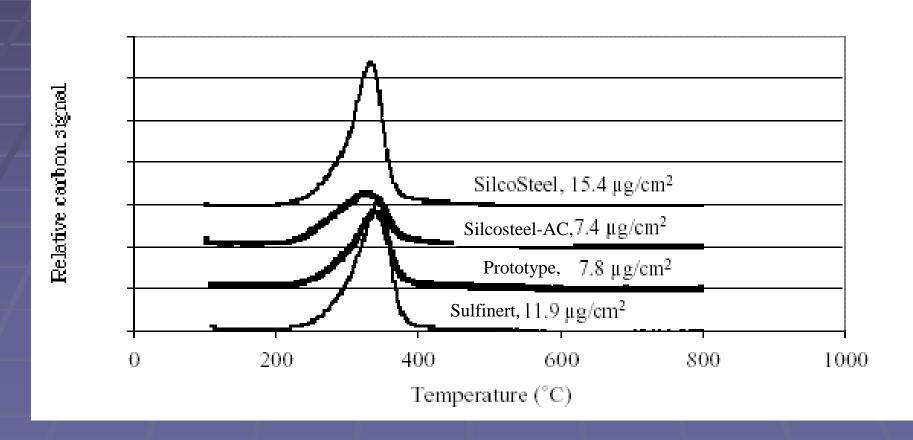
- Silcosteel[®] coated tubing showed good transfer properties for entire experimental matrix
- Performed at the same level as Teflon lined tubing.
- Both performed better than a standard stainless steel transfer line
- Study noted that results warranted further study


Examples of applications

- Purge and Trap systems manufactured to test water quality use Restek treated tubing to insure transfer
- Varian Ion trap mass spectrometer elements are coated to eliminate adsorption of ions
- Sulfur sampling and transfer equipment is coated to eliminate loss of active compounds
 - Testing of Ethylene and Propylene
 - Testing of Beverage grade CO₂ for sulfur
 - Testing of Sulfur compounds in beer
 - Natural Gas; LPG; Gasoline; Diesel

Anti-Coking

- In applications of heated hydrocarbon transfer, carbon deposits can form
- Carbon deposits are catalyzed by nickel, sulfur and carbon in steel lattice
- The Silcosteel-AC coating produces a barrier that eliminates catalytic carbon buildup


Anti-Coking Data

- Semih Eser; PSU Prof. Fuel Sciences
- 8x improvement over raw 316L

Anti-Coking Data (cont.)

Different coatings, SEGMENT-2, JP5, 350°C, 4 mL/min. 24h

Example Applications

- Coating fuel injector nozzles to decrease buildup
- Increasing lifetimes of Ethylene and Propylene Plug Flow reactors
- Increasing reliability of valves used in internal combustion engines
- Reduces fouling in heat exchangers

Corrosion Resistance

- Stainless steel surfaces susceptible to attack from hydrochloric acid, sulfuric acid and nitric acid
- Silcosteel-CR treatment produces a layer of amorphous silicon
- Amorphous silicon is insoluble in hydrochloric acid, sulfuric acid and nitric acid

Corrosion Data (cont.)

- Evaluation
 - Certified corrosion engineers
 - Spectroscopic analysis
 - Mechanical testing
 - Electrochemical
 Sample 24, Side 2, field width = 285 micrometers

 Cyclic Polarization in neutral, acidic, alkaline

Substrate

- Atmospheric corrosion
 - ASTM moisture condensation
 - Salt spray ASTM B117
- Stress corrosion cracking (MgCl; ASTM G36)

ASTM G45 B Data

- ASTM G45 method B; Pitting and Crevice Corrosion
 - 6% Ferric Chloride solution
 - 72hrs, 20°C
 - Gasket wrap

Sample	Initial Weight (g)	Final Weight (g)	Weight Loss (g)	Weight Loss	
	Weight (g)	vveight (g)	Loss (g)	(g/m^2)	
Silco-CR Sample 17	10.4105	10.3710	0.0395	19	
Silco-CR Sample 28	10.1256	10.0743	0.0513	25	
Silco-CR Sample 47	10.1263	10.0742	0.0521	25	
Bare Sample 27	10.0444	9.5655	0.4789	231	
Bare Sample 34	10.1265	9.6923	0.4342	209	
Bare Sample 37	10.1007	9.6276	0.4731	228	

ASTM G45 B (cont.)

 Silcosteel®-CR treated sample showing no crevice corrosion only slight pitting corrosion

ASTM G45 B (cont.)

 Bare 316L Stainless Steel coupon showing severe crevice corrosion

ASTM G-61Data

- ASTM G-61; Cyclic Polarization Electrochemical Corrosion Testing
 - Acid, neutral, basic aqueous solutions with varying Cl⁻ ion concentrations (100, 3000, 5000ppm)
 - EG&G VersaStat System, 23°C
 - 316L vs. Silcosteel®-CR on 316L, 304L

Neutral solution; 3000ppm Cl⁻

-CR vs 316L Raw: 50x improvement

Sample	Ec, mV	Ic, uA/cm^2	Eb, mV	CR, mpy
316 L	-418	0.096	370	0.04
Silcosteel-CR 316 L	-533	0.002	1460	0.0009
304 L	-435	0.145	361	0.06

Ec = corrosion potential Ic = current density at Ec Eb = pitting potential CR = corrosion rate

ASTM-G61 (cont.)

Acidic Solution; 1N H2SO4;

3000ppm Cl⁻

-CR vs 316L Raw: 10x improvement

	Sample	Ec, mV	Ic, uA/cm^2	Eb, mV	CR, mpy
	316 L	-662	1.920	370	0.83
	Silcosteel-CR 316 L	-843	0.123	927	0.05
4	304 L	-639	2.650	587	1.14

Basic Solution; 1N NaOH; 3000ppm Cl⁻

-CR vs 316L Raw: 4x improvement*

Sample	Ec, mV	Ic, uA/cm^2	Eb, mV	CR, mpy
316 L	-419	0.193	265	0.08
Silcosteel-CR 316 L	-816	0.036	618	0.02
304 L	-388	1.120	668	0.48

ASTM B117 Data

- ASTM B 117 "Practice for Operating Salt Spray (Fog) Apparatus."
 - 1000 hour exposure
 - 100 degree Fahrenheit
 - 3.5% by weight sodium chloride
- Reproduces exposure to marine environments.

ASTM B117 Data (cont.)

 Silcosteel[®]-CR treated samples showed no signs of bleeding, rusting, or pitting corrosion

ASTM B117 Data (cont.)

The non-treated samples showed some light surface rusting, but no signs of pitting corrosion.

ASTM D4585 Data

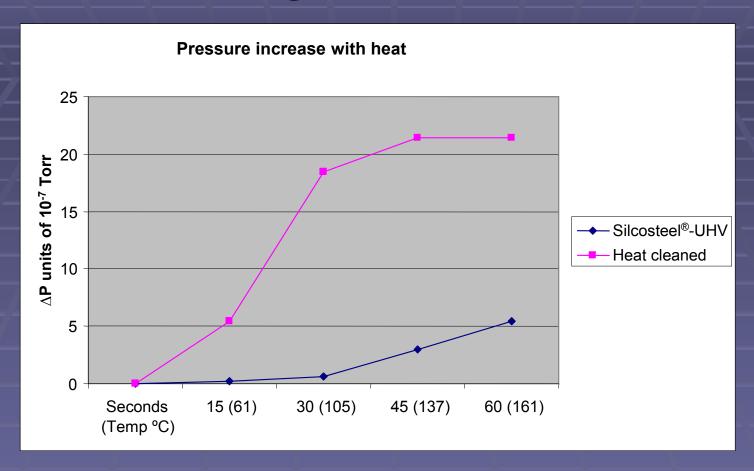
- ASTM D 4585, "Practice for Testing the Water Resistance of Coatings Using Controlled Condensation."
 - 1000 hour study
 - 100 degrees Fahrenheit
 - Distilled water
- Reproduces exposure to atmospheric conditions

ASTM D4585 (cont.)

 Silcosteel®-CR treated samples showed no signs of bleeding, rusting, or pitting corrosion

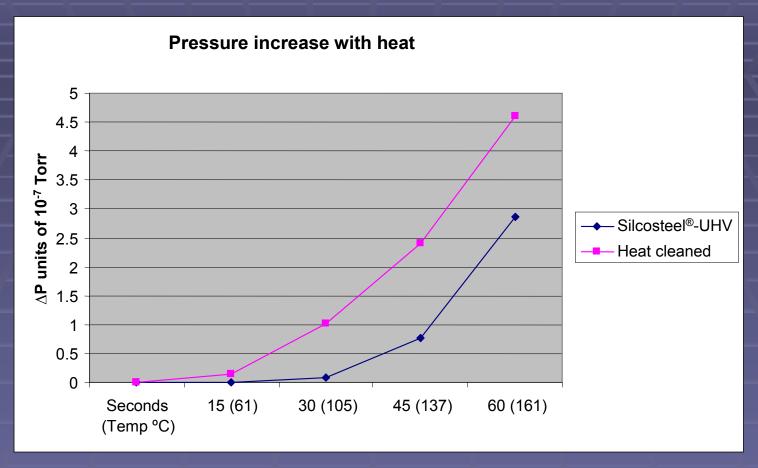
ASTM D4585 (cont.)

Only a very light surface oxide film was seen on the bare samples.


Examples Applications

- Using Silcosteel-CR treated 316L stainless steel instead of items made from Hastelloy or Inconel in corrosive environments
- Protecting the value and extending the life of expensive existing equipment in corrosive environments by use of protective coating
- Increase cycle lifetime of equipment

Ultra-High-Vacuum (UHV)


- UHV environments are characterized as having a vacuum of 1x10⁻⁷ Torr or better
- In these conditions, materials trapped to the surface of and inside the steel outgas into the vacuum environment
- The outgassing of material increases pressure in the environment
- Large pumps and long "pump down" times are required to achieve UHV environments
- Silcosteel-UHV treatment produces a barrier that blocks materials from outgassing into the vacuum environment.

Ultra-High Vacuum Data

- Bruce Kendall: Elvac Labs, PSU Physics prof. (ret.)
- Turbopump, 4.6 x 10⁻⁷ Torr base pressure
- 1hr under vacuum (∆P1)
- 27x improvement at 61°C

Ultra-High Vacuum Data (cont.)

- Turbopump, 7.5 x 10⁻⁸ Torr base pressure
- 10hr under vacuum (△P2)
- 14x improvement at 61°C

Example Applications

- Coating of accelerator chambers to create higher vacuum environment
- Use in coating of semi-conductor manufacturing equipment to decrease defect rate
- Reducing time needed to achieve high vacuum environments in analytical equipment (SEM, XPS, etc.,.)

Future

- Currently renovating for expansion
- New process oven (31" ID x 24" deep)
- Continual process improvement and new product development
 - Hardness
 - Improved corrosion resistance
 - Customized surfaces