Gas Chromatographic Analysis of Polybrominated Diphenyl Ethers Using a Novel GC Column and Direct Flash Injection

Frank L. Dorman, Chris English, Karen MacPherson, and Eric Reiner

Restek Corporation www.restekcorp.com

Brominated Diphenylether Flame Retardants:

- Products based on penta-, octa-, and decaBDE are commercially used as flame retardants.
- Global production of DeBDE is approximately 40,000 tons/year.
- Heavily used for furniture treatment and electronics in USA, Japan, and Europe
- May form PBDDs and PBDFs when combusted, and toxicicity is estimated to be similar to PCDDs and PCDFs

Polybromonated Diphenylethers

Br 1-10

- Named similarly to PCB congeners (BDE 1-209)
 - J. High Resolut Chromatogr 15:260
- Human exposure via the food chain is 0.2 0.7 mg/day Organohalogen Compounds 35:411
- Listed as Endocrine Disruptors

Restek www.restekcerp.viron Health Perspect 101:378

Common Amenable Methods of Analysis

- High-resolution mass spectrometric detection
 - Additional specificity may improve sensitivity in complex matrices
 - Many dioxin labs are also interested in PBDE's
- Electron capture detection
 - More common to most labs
 - Lower cost
- Others not investigated yet
 - GC-NCI-MS
 - HPLC-MS

Prior Reported Analyses

GC-HRMS

- Difficulty eluting nona's and decaBDE due to high molecular weight
- On-column injection required to minimize molecular weight discrimination
 - May require more maintenance and cleaner sample extracts than hot flash techniques.
- Column bleed levels hurt sensitivity of higher bromination level congeners
- Often done using two columns:
 - Longer column to separate lower bromination level congeners
 - Short column to analyze nona and decaBDE's

Prior Methods of Analysis

- Decision made if deca (and possibly nona and octa) are desired.
 - Higher molecular weight congeners are either analyzed separately, or not at all.
 - Higher molecular weight congeners are allowed to "ghost" out on "standard" column (5% diphenyl)
 - If interested in BDE 209, longer run times are common
- Loss of higher molecular weight congeners is generally due to injection technique

Analytical Needs:

- Need injection technique which does not have discrimination issues like splitless
- Extracts may contain high levels of contamination, and not all labs will want to thoroughly clean the extracts
- High temperature stationary phase and column that has necessary selectivity, and low bleed levels

Convert Split or Splitless Inlets to Direct Injection Mode

Uniliner w/ Hole

- Allows Direct injection and Splitless injection methods
- Minimizes injection port discrimination
- Reduces loss of active compounds for more accurate results

Restek www.restekcorp.com

Rtx-500 Capillary GC Column

- Carborane-stabilized stationary phase
 - Maximum temperature of 380 C in "standard hightemperature" tubing
 - Maximum temperature of 440 C in passivated metal columns (Mxt-500)
- Extremely low bleed levels
 - Surpasses phenyl/methyl phases, and silphenylene stationary phases
- Common dimensions available

Wellington Laboratories BDE Mix-C

4-bromodiphenyl ether (3)	250	141,115
2,4-Dibromodiphenyl ether (7)	168	328,139
4,4'-dibromodiphenyl ether (15)	328	168,221
2,2',4-tribromodiphenyl ether (17)	248	408,406
2,4,4'-tribromodiphenyl ether (28)	406	248,246
2,2',4,5'-tetrabromodiphenyl ether (49)	326	486,328,324
2,3',4',6-tetrabromodiphenyl ether (71)	326	486,324,328
2,2',4,4'-tetrabromodiphenyl ether (47)	326	486,328,324
2,3',4,4'-tetrabromodiphenyl ether (66)	326	486,328,324
3,3',4,4'-tetrabromodiphenyl ether (77)	326	486,328,324
2,2',4,4',6-pentabromodiphenyl ether (100)	406	564,566
2,3',4,4',6-pentabromodiphenyl ether (119)	404	406,564
2,2',4,4',5-pentabromodiphenyl ether (99)	406	564,566
2,2',3,4,4'-pentabromodiphenyl ether (85)	406	564,566
3,3',4,4',5-pentabromodiphenyl ether (126)	566	564,568,406
2,2',4,4',5,6'-hexabromodiphenyl ether (154)	484	644,486
2,2',4,4',5,5'-hexabromodiphenyl ether (153)	644	484,486,482
2,2',3,4,4',5'-hexabromodiphenyl ether (138)	642	484
2,2',3,4,4',5',6-heptabromodiphenyl ether (183)	722	564
decabromodiphenyl ether (209)	956	
decabromodiphenyl ether (209)	956	

Re

Restek www.restekcorp.com

	BROMINATED FLAME RETARDANT GC PROGRAM						
	INSTRUI	MENT CONFIG	URATION				
	Micromass Autospec-UltimaNT (High Resolution Mass Spectro						
	Source T	emperature =	300°C				
	GC CON	IDITIONS	(HP 6890 +)			
		Constant flow @ 1.5mL/min					
		Injector Temp. 300°C					
		Temp. Ramp	Temp.	Hold Time			
		Start Temp.	100	1 min			
		10	110	0.64			
		80	180	0			
		5	350	23			
		TOTAL RUN TIME =		60.51			
www.restek	corp.com	**NB: DecaB	DE (last elut	or) elutes a	t ~43 min.		

GC-ECD Analysis

- Electron capture detector is common to many laboratories
- Compounds have excellent response by ECD
- Higher flow rates may allow for more rapid separation using larger-diameter columns
- Instrumentation less expensive than HRMS
- Instrumentation is also field portable

Wellington Laboratories BDE Mix-C

0.53 mm i.d. column partially resolves BDE 154 and 126 under these conditions

Commercially Available PBDE Mixes

Commercially Available PBDE Mixes

Conditions

Column: Rtx-500 30m x 0.53mm x 0.15 Ser# 233548

Flows: Hydrogen 7.69ml/min (66.7cm/sec) @ 100°C

Dead Time: MeCl2 Headspace 0.76min @ 100°C

Oven: $100(1) \frac{15}{260}(5) \frac{15}{380} (15) \sim 40 \text{ min runtime}$

Standards: Wellington Laboratory BDE-Mix C

1ul injection 30pg on column.

Injection: Drilled Press-Tight Uniliner.

Acknowledgements

- Reference materials courtesy of Wellington Laboratories – Guelph, Ontario
- Dr. Eric Reiner and Karen MacPherson of the Ontario Ministry of the Environment – Etobicoke, Ontario provided the HRMS analyses, and guidance.