Improving Method Performance through Fast LC

C. Vernon Bartlett, B.A.; Terrence S. Reid, M.S.; Rebecca E. Wittrig, Ph.D

Restek Corporation www.restekcorp.com

Fast LC Methods

- Use of columns that can operate at high flow rates with reduced pressures (increased k')
- Use of a reduced particle size substrate (<3µm) to force higher theoretical plate counts (increased N)
- Use of shortened standard packed columns with optimized and possibly unique stationary phases (increased alpha)

Fast LC Technique

- Highly selective stationary phase is desired to maximize alpha values.
- Elution of components is typically accomplished through the use of gradients to reduce retention of highly retained components.
- Simple resolution of methylene substitutions /additions may be accomplished isocratically.
- Good screening technique for unknowns.

Fast LC Technique – Advantages

- Faster re-equilibration (when using gradients)
- Sensitivity improvements.
- Older qualitative techniques can be adapted to a highly automated quantitative technique.
- Allows potentially high increases in sample throughput.
- Great technique when performed by LC-MS
- Shorter analysis times reduce solvent consumption and waste.

Fast LC Technique – Disadvantages

- Critical separations are more sensitive to extracolumn volume (as post column reactors.)
- Extremely selective stationary phase must be used to maximize selectivity – especially for structural isomers.
- May not be well suited to normal phase or ion pairing separations (with gradients).

Principles and Theory of HPLC

General Resolution Equation

$$R = 1/4 (a-1/a) \sqrt{N}$$

(k' / k'+1)

Selectivity

- stationary phase
- mobile phase composition
- additives

Efficiency

- particle size
- column length

Retention

- chain length
- mobile phase strength

Column Length vs Theoretical Plates

Plate Count vs Particle Size and Flow Rate

4.6 mm Column

Principles and Theory of HPLC

Resolution Depends on K'

K' Value	K' Term	K' Term K' Resolution ?	
0	0	0	
1	1/2	.50	
2	2/3	.67	
3	3/4	.75	
10	10/11	.91	
20	20/21	.95	

Resolution Increase vs Alpha

Fast LC improvement of USP TLC and HPLC Method

Digitalis Extracts and Derivatives

Digitoxin: $X_1=X_2=H$

Digoxin: $X_1=H$; $X_2=OH$

Gitoxin: X_1 =OH; X_2 =H

Digitoxin Substitutions

Figure 1

Fast LC Separation of Digitalis Derivatives Experimental Fluorophase (3 minutes)

Advantages of Digitalis Fast LC over Current Methods

- Improved automation and analysis throughput.
- Reduction of analysis time previously a 30 cm length C18 column was required for resolution.
- Ability to analyze all materials by HPLC.
- Ability to precisely quantitate materials vs TLC.
- · Highly selective stationary phase.
- Technique can also be applied to purification and analysis of digoxin labeled materials for biological activity.
- Perfect technique for use in high speed cleaning validations.

Fast LC Analysis of Carbamate Insecticides

Figure 3-Structures of Commonly Analyzed Carbamates

Carbamate Analysis using Standard HPLC Methodology (About 40 minutes)

Fast LC Separation of Carbamates (About 13 minutes)

Fast LC Separation of 11 Carbamates on Ultra Carbamate **Ultra Carbamate** Peak List: Column: 9177355 1. aldicarb sulfone Catalog #: Dimensions: 50 x 4.6mm aldicarb sulfoxide Particle size: 3um 3. oxamyl Pore size: 100Å 4. methomyl 5. 3-hydroxycarbofuran Conditions: 6. aldicarb Mobile Phase: A: 90:10 water:methanol 7. propoxur B: 90:10 methanol:acetonitrile carbofuran Time (min): %B 9. carbaryl 10 0 methiocarb 10 90 11. 4-bromo-3,5-dimethylcarbamate Flow: 1.5mL/min Temp.: 27°C Sample: Det.: UV @ 220nm 5µL Inj.: Conc.: 50ug/mL methanol Solvent: Restek standards: Catalog# 32274 and 32273 mixed 50:50 10 min. LC 0225

Fast LC Analysis of Carbamates with MS Detection

Table II. Experimental conditions for the LC/MS analysis of carbamate compounds.

HPLC Conditions

Column: Ultra Carbamate, 100 mm x 4.6 mm, 3 µm

Mobile Phase A: 90% water:10% methanol with 10mM ammonium formate
Mobile Phase B: 10% acetonitrile:90% methanol with 10mM ammonium formate

Gradient: 90%A:10%B to 10%A:90%B from 0-15 minutes

Inj. Volume: 10 µL

Flow Rate: 0.75 mL/min to UV detector, 0.25 mL/min to MSD

MSD Conditions		Compound	lon	Cone V	
Detector:	Micromass ZMD	1	223.3	25V	
Mode:	ESI+	2	207.3	18V	
Capillary V:	3.50	3	237.2*	10V	
Extractor:	4.0	4	163.2	15V	
Ion Energy:	0.4	5	238.3	15V	
Multiplier:	650	6	191.2	8V	
Source Temp:	100°C	7	210.2	18V	
Desolv. Temp:	250°C	8	222.3	22V	
Gas Flow:	490 L/hr.	9	202.2	18V	
		10	226.3	19V	
*Ammonium adduct (all other are [M+H]+ ions)					

Conventional Vanilla Flavoring Analysis (About 20 minutes with gradient)

Highly Selective Fast LC Vanillin Analysis (Less than 5 minutes and isocratic)

Vanillin Fast LC Analysis Advantages

- Takes advantage of improved methylene selectivity by the use of C18 phase versus a C8
- Analysis can be conducted in 3 to 5 minutes versus older 15 minute methods.
- High but not not excessive selectivity of C18 phases toward simple methylene substitutions allow the use of an isocratic mobile phase.
- Reduction of column length also reduces the time needed for more hydrophobic analytes to elute from system.

EPA Method 610 – PAHs on Pinnacle II PAH

PAHs on Pinnacle II PAH- Fast LC

Fast LC Analysis of Carboxylic Acids on Ultra Aqueous C18

Fast LC Analysis of Aromatic Amino Acids on Ultra Aqueous C18

Conclusions

- Highly selective and sometimes unique stationary phases make Fast LC a reality using conventional hardware and techniques.
- Fast LC is viable, precise quantitative alternative for analysis previously performed by Thin Layer Chromatography.
- Fast LC can improve method sensitivity, reduce solvent waste, and enhance laboratory throughput.

Conclusions

- The proper stationary phase selection can change a gradient system to a faster isocratic system.
- Sometimes only a simple phase change is needed to convert a method to a Fast LC separation.
- Selectivity is still the greatest factor in separation optimization.

Acknowledgements

• The authors would like to thank Randy Romesberg, Larry Peters, and Rahul Patil of Restek Corporation for their participation in creating columns and hardware.