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How 1S GC Learned/Used?

. GC thought of, and often taught as “ Separation by
boiling point”

- Where mobile and stationary phases “do chemistry” in
HPLC, in GC column dimensions and temperature
program are typically adjusted

- GC applications are not usually optimized, and
separations are compromised to fit existing columns and
stationary phases

- Most phases not designed with any application in mind,
and common phases are similar in selectivity (-1s & -5S)



Needs for Difficult GC Separations:

- Stationary phase selectivity should be optimized
for particular separation, to maximize resolution
and minimize run time

- Column dimensions should be matched to
analytical requirements (flow, capacity, etc.)

- Current offerings of stationary phases and
functionalities are limited

- Selection of phase and column, and optimization
of separations needs to be easy for end user



General Equation for Resolution:

R=1/4] L/h x(k/k+1)x (a-1/a)

Selectivity Factor (a) — addressed by
stationary phase modeling
not commonly done by end user

Capacity Factor (k), and Column Factor —

addressed by physical modeling
can be simultaneous with, or independent of
stationary phase modeling




Stationary Phase Optimization Techniques

- Empirical Modeling:
— Window diagramming approach

— Computer ssmulation of phase selectivity, independent
of column dimensions (ezGC™)

— Computer prediction of optimized stationary phase
composition and column dimensions, with specific
resolution factors (times and peak widths)

- Molecular Modeling:

— Computer prediction of solute/stationary phase
Interactions for new polymer designs




Stationary Phase Optimization

- Window diagramming (Rtx-502.2)

. Computer smulation of selectivity, independent of
column dimensions (ezGC™)

— Rtx®-CL Pesticides, Rtx-CL Pesticides2

. Computer prediction of optimized stationary phase
composition and column dimensions

— RtxX-TNT, Rtx-TNT2, Rtx-VMS, Rtx-VGC, Rtx-5S51IMS, Rtx-VRX
. Computer prediction of solute/stationary phase
Interactions for new polymer designs



Window Diagrams

- Maer and Karpathy (’ 60s):

— Demonstrated that mixing phases together could yield
unique selectivity for packed column applications

- Laub and Purnéll (’ 70s)
—- Mixed phase packed column applications
- Jennings et al (' 80s)

— Packed column applications, and capillary work based
on lengths of disssimilar columns

_ DB™-1301 developed using DB™-1 and DB™-1701



Window Diagramming

Rtx®-1 Rtx®-502 Ritx®-35
chlorobenzene 17.79 18.57 19.27

e benzene 18.26 18.78 19.25
m/p-xylene 18.48 18.90 19.27
0-CIF benzene 18.16 18.93 19.61
o-Xxylene 19.07 19.60 20.07
styrene 18.93 19.63 20.25




Stationary Phase Optimization

. Window diagramming

- Computer ssimulation of phase selectivity,

independent of column dimensions(ezGC™)
— Rtx®-CL Pesticides, Rtx-CL Pesticides2

. Computer prediction of optimized stationary
phase composition and column dimensions

— Rtx®-CL Pesticides, Rtx-CL Pesticides2, Rtx-TNT Rtx-TNT2,
Rtx-VMS, Ritx-VGC, Rtx-5S51IM S, Rtx-VRX

. Computer prediction of solute/stationary phase
Interactions for new polymer designs




Computer ssmulation of phase selectivity,
independent of column dimensions(ezGC™)

. “FI1x” Run Conditions

- Input data is normalized for column and program
parameters

. Search for optimum solution by varying the
stationary phase composition

- Program tracks up to 8 dimensions of phase
functionalities

- No solution requires separate re-optimization of
Input data



3-Space Selectivity Surface for 4 Pesticide
Compounds
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Ritx®-CL Pesticides Column Benefits

- Basaline resolution of all 22 compounds
. <25 minute analysistime

. Avallablein al common dimensions
— 0.18, 0.25, 0.32 and 0.53mm ODs

- Very low electron capture detector (ECD)
bleed levels

- High thermal stability
— 330°C maximum temperature



Confirmation Column?

- Requirements
— Same analysis conditions as primary column
— Different elution order
— Basdline resolution desirable
— High thermal stability and inertness
— Similar analysis times
. Rtx®-CL Pesticides2 column meets requirements



Chlorinated Pesticides

22

Fast Runs
Rtx-CL Pesticides 19
(30m x 0.32mm, 0.5um) g §
1 6 ! g ;O\ > 18 20
LA g M L
Rix-CL Pesticides2 .
(30m x 0.32mm, 0.25um) 12“ .

T LEEL TN

12

22

6 8 10

12



Chlorinated Pesticides

1 2,4,5,6-tetrachloro-m-xylene
2 alphaBHC

3 gamma BHC

4 betaBHC

5 deltaBHC

6 heptachlor

7 aldrin

8 heptachlor epoxide
9 gamma chlordane
10 alpha chlordane
11 4,4'-DDE

12 endosulfan |

13 diddrin

14 endrin

15 4,4'-DDD

16 endosulfan I1

17 44-DDT

18 endrin aldehyde
19 methoxychlor

20 endosulfan sulfate
21 endrin ketone

22 decachlorobiphenyl



Stationary Phase Optimization

. Window diagramming

. Computer ssmulation of phase selectivity,
Independent of column dimensions(ezGC™)

Rix®-CL Pesticides, Rtx-CL Pesticides2

- Computer prediction of optimized stationary
phase composition AND column dimensions

- Rtx-TNT Rtx-TNT2, Rtx-VMS, Rtx-VGC, Rtx-5SIMS, Rtx-
VRX, Rtx-OPPesticides2, Customer-specific columns

. Computer prediction of solute/stationary phase
Interactions for new polymer designs




3-Space Selectivity Model for 3 Compounds




Explosives Analysis by HRGC

¢ HRGC more common than HPLC

+ Selective detection using ECD

¢ Direct flash injection of ACN extract
¢ Simultaneous dua column analysis



Explosives Target List EPA 8095

1 EGDN

2 nitrobenzene

3 2-nitrotoluene

4 3-nitrotoluene

5 4-nitrotoluene

6 nitroglycerine coelutes with 2,6-dinitrotoluene on Rtx-200

7 1,3-dinitrobenzene

8 2,6-dintrotoluene co-elutes with nitroglycerine on Rtx-200

9 1,2-dinitrobenzene (surrogate)

10 2,4-dinitrotoluene

11 3,4-dinitrotoluene (internal standard)

12 1,3,5-trinitrobenzene

13 trinitrotoluene

14 picric acid

15 PETN co-elutes with RDX on Rtx-1, co-elutes with 2-amino-4,6-dinitrotoluene on Rtx-200
16 RDX co-eluteswith PETN on Rtx-1

17 4-amino-2,6-dinitrotoluene co-eluteswith 3,5-dinitroaniline on Rtx-5
18 3,5-dinitroaniline co-€lutes with 4-amino-2,6-dintrotoluene on Rtx-5
19 2-amino-4,6-dinitrotoluene co-elutes with PETN on Rtx-200

20 tetryl

21 nitroguanidine

22 HMX does not elute as a peak when the run time is longer than 20 minutes



Design Criteria

Short Column, Wide-bore, Standard d;, High
- Analysis Time < 20 min.

- Low Bleed with ECD
. Baseline Resolution
- Column Inertness




Modeling for Explosives




First Optimization Rtx-TNT

RIX-TNT1 6 mx 0.53mm x 1.5 um Direct Inj 250C ECD 300C He@10mls/min.
100°C 2min.to 200°C @ 10°C/min to 250°C @ 20°C/min.(10)
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Second Optimization Rtx-TNT?2

Rtx-TNT2

6mx 0.53mm x 1.5 um Direct Inj 250C ECD 300C He@10mils/min.

100°C 2 min. to 200° C @ 10°C/min to 250°C @200°C/min. (10)
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On-Column Injection Rtx-TNT

Ethylene glycol dinitrate
Nitrobenzene
2-Nitrotoluene
3-Nitrotoluene
4-Nitrotoluene
Nitroglycerin
1,3-Dinitrobenzene
2,6-Dinitrotoluene
2,4-Dinitrotoluene
3,4-Dinitrotoluene
1,3,5-Trinitrobenzene

TNT

PETN

RDX
4-Amino-2,6-dinitrotoluene
3,5-Dinitroaniline
2-Amino-4,6-dinitrotoluene
Tetryl

Less than 8 minutes!
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On-Column Injection Rtx-TNT2

Ethylene glycol dinitrate
Nitrobenzene
2-Nitrotoluene
3-Nitrotoluene
4-Nitrotoluene
Nitroglycerin
1,3-Dinitrobenzene
2,6-Dinitrotoluene
2,4-Dinitrotoluene
3,4-Dinitrotoluene
1,3,5-Trinitrobenzene

TNT

PETN

RDX
4-Amino-2,6-dinitrotoluene
3,5-Dinitroaniline
2-Amino-4,6-dinitrotoluene
Tetryl
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What If No Selective Functionality Can be
Found?

- Accept less than ideal separation
— Effect on quantitation and/or run time

- Use “old method” of trial and error
— Slow, and inefficient
— No guarantee that solution will be found
- Test functionalities electronically
— Unproven technique for GC applicaiton
- CPU intensive
— Faster than trial and error



Stationary Phase Optimization

. Window diagramming

. Computer ssmulation of phase selectivity,
Independent of column dimensions(ezGC™)

. Computer prediction of optimized stationary

phase composition and column dimensions

— Rtx®-CL Pesticides Rtx-CL Pesticides2, Rtx-TNT Rtx-TNT?2,
Ritx-VMS, Ritx-VGC, Rtx-5S1IM S, Rtx-VRX

- Computer prediction of solute/stationary phase
Interactions for new polymer designs




Computer Modeling: 2 Approaches

- Molecular Dynamics Approach:

— Molecules are treated as harmonic oscillators, and
forces of Interaction are minimized to determine
orientation.

- Quantum Mechanical Approach:

— Wave functions are calculated, and molecular orbital
structure 1s determined.

- Two techniques are complementary



Achieving Analyte Separation

Resolution
R=1/4{L/h x(k/k+1)x (a-1/a)

Capacity Factor
k= (tg - to) / 1

Selectivity
a=k,/k;

Thermodynamics:
AG = AH - TAS AG = -RT In K



I\/Iodeling - Energies of Interaction
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Molecular Modeling Results:

- Initial attempts were not successful
- Evaluated different force fields— AMBER

- Modified calculations based on work of A.Z.
Panagiotopoul 0s

- Demeton-O on PDM S phase:
— Obsarved AG = -1.14E4 J/mol
— Cdculated AG = -1.13E4 Jmol



Physical Parameter Optimization

. Chromatographers need ability to optimize
separations to make most efficient possible use of
time

— Aids column choice
— Excdllent teaching tool

— Allows for run-time and separation optimization for
common compounds, or specific user compounds
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2 Pro ezGC for Windows

ile Solutiohz  Expermental  [ndices

Calculator View ‘Window Help

olution 1 - 10 out of 10 components resolved >= 4.00

solution 1- Stabibax 30 mx 0.320 mm x 1.0 pm
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What about my compounds?

. User libraries are easy to create

— Compounds analyzed using two different temperature
programs

— Must measure dead times for column
— Input directly or via spreadsheet

- Two runs necessary to determine optimum set of
physical parameters for compound list



For the Routine User:

- Pro EZ-GC isrelatively ssimple to operate

- Allows rapid selection of optimal program
— Flow rates, carrier types and temperatures

- Transportable from PC to PC

- Low cost

- Can aid in column choice for common analyses
- Excellent teaching tool



Summary

. Stationary Phase Modeling:

— Allowed for 10 new commercially-available phases
over last three years

— Individua customer columns can be cost effective

— Most important factor for resolution is choosing a
highly selective stationary phase

- Physical Modeling:
— Pro ezGC reintroduced for operation under current

operating systems. Low cost, and allows for physical
optimization.



