Annular Denuder Coatings for the Collection of Organic Vapor Phase During PM2.5 Sampling

<u>David M. Shelow</u>, Jingzhen Xu, PhD

Restek Corporation www.restekcorp.com

Particulate Matter (PM)

- Size -0.005 to $50\mu m$
 - PM10
 - Coarse 2.5μm 10μm
 - PM2.5 fine fraction
 - Ultrafine 1µm
- Mass
 - -2 to $200\mu g/m^3$
- Composition
 - SO₄, NH₃, NO₃, EC/OC, PAH

Particulate Matter Sources

- Coarse PM10
 - Dust, sea salts, vehicles, combustion products
- Fine PM2.5
 - Vehicles emissions, oil & coal utility, wood fuel, biomass burning
- Primary Emissions
 - Transportation, fuel combustion, road dust, construction
- Secondary Aerosol Formulation
 - Sulfates, nitrates, organic particulates from VOCs

Problems Associated With PM

Health effects

- Inhalables (PM10) the larger particles get trapped in bronchial tubes of upper respiratory tract
- Respirables (PM2.5) the smaller the particle the deeper into the lungs it can penetrate
- Possible linkage to chronic bronchitis and asthma

Need for Speciation

- Characterization of metals, ions, and carbon constituents
- Air quality modeling analysis
- Aiding in health studies
- Understanding the effects of atmospheric constituents
- Aid in monitoring network design by USEPA

Analytical Speciation Methodology for PM

- Analytical Method
- Gravimetric
- Ion Chromatography
- Thermal/Optical Method-NIOSH 5040
- EDXRF, ICP, AA

- Analyte
- Total Mass
- SO₄, Cl, NH₄, NO₃
- EC/OC
- S, Al, Si, Ti, Ca, V, Cr,
 Mn, Fe, Ni, Cu, Zn, Cd,
 Ba, Pb, metals

Denuder Technology

- Denuder Types
 - Single channel or multi channel deunders
 - Glass, metal, ceramic
 - Annular typically 1mm annulus
 - Honeycomb
- Coated
- Many times placed in series
- Extracted for the analysis
- Can be recoated and reused
- Often used as a "scrubber"

Multi Channel Annular Denuder

How Denuders Work

- The vapor phase of the particulate is adsorbed onto the adsorbent material coated on the walls of the denuder.
- Stripped particulate is collected downstream.
- Denuder is solvent rinsed to extract vapor phase.

Denuder Types

Denuder Types cont.

Common Denuder Coatings

- Coating
- Citric acid
- Na₂CO₃
- MgO
- XAD-4

- Analytes
- \cdot NH₃
- SO₂, HCl, HNO₃, HNO₂
- Nitric acid scrubber
- SVOCs-PAH

Organic PM2.5 Speciation

- Vapor phase of particulate is denuded from particle. Vapor phase has a higher partitioning coefficient.
- Partitions in adsorbent coated on walls
- Can be extracted and analyzed
- For semi-volatiles technology not fully developed
- PAHs commonly extracted using XAD-4

XAD-4 Physical Characteristics

Styrene divinylbenzene copolymer

High surface area – 780m²/g

Average pore size 50Å

Denuder XAD-4 Coating Requirements

- Milled to 1-2μm
- Soxhlet extraction cleaned
- Vacuum oven dried
- Crosslinking agents added prior to coating
- Uniform deposition
 - Ensure laminar flow
 - Decrease turbulence
 - Affect efficiency of sampling
- Sample capacity

XAD-4 Denuder Coating

- Dr. Lara Gundel at LBNL has developed a procedure for coating glass annular denuders with XAD-4.
- Slurry of XAD-4 in Hexane
- Fill denuder, roll or invert, remove, dry, weigh, repeat 10 times
- US Patent 5,763,360
- Licensing agreement

Comparison of Gundel/Restek Coatings

- XAD-4
- 52mm x 285mm 8 Channel denuders
- LBL denuders coated by Dr. Lara Gundel
- Restek coated using a 1 step coating procedure, vacuum oven dried
- Samples taken at Houston EPA Supersite
 September 2000
- 2 denuders in series

Sample collected during Texas Air Quality Study 2000 at LaPorte, Collection period - September 10,2000 from 00:00 to 11:30 AM

	[] ng/m/3			
LBL denuders	front denuder		back denu	front/total
Name	1st wash	2nd wash	1st wash	lbl
phenol	12	0	16	43%
Naphthalene	11	0	23	32%
nC12	9	0	0	100%
nC13	10	0	0	100%
1-methyl naphthalene	12	0	0	100%
2-Methyl naphthalene	6	0	1	89%
Biphenyl	2	0	0	100%
Dimethyl naphthalene	2	0	0	100%
acenaphthene	3	0	0	100%
Dibenzofuran	4	0	0	100%
nC16	4	0	0	100%
fluorene	4	0	0	100%
nC17	4	0	0	93%
phenanthrene	8	0	0	100%
anthracene	8	0	0	96%
nC19	1	0	0	100%
nC20	1	0	0	100%
fluoranthene	2	0	0	100%
nC21	1	0	0	100%
pyrene	0	0	0	100%

	[] ng/m^3			
Restek denuders	front denuder		back denu	front/total
Name	1st wash 2nd wash		1st wash	
phenol	25	0	25	49%
Naphthalene	23	0	25	49%
nC12	9	0	0	100%
nC13	10	0	0	100%
1-methyl naphthalene	15	0	0	100%
2-Methyl naphthalene	8	0	0	100%
Biphenyl	2	0	0	100%
Dimethyl naphthalene	2	0	0	100%
acenaphthene	4	0	0	100%
Dibenzofuran	4	0	0	100%
nC16	4	0	0	100%
fluorene	4	0	0	100%
nC17	5	0	0	100%
phenanthrene	7	0	0	100%
anthracene	7	0	0	100%
nC19	1	0	0	100%
nC20	1	0	0	100%
fluoranthene	1	0	0	100%
nC21	1	0	0	100%
pyrene	0	0	0	100%

Comparison of Front Denuder % recovery					
Name	LBL	Restek			
phenol	43%	49%			
Naphthalene	32%	49%			
nC12	100%	100%			
nC13	100%	100%			
1-methyl naphthalene	100%	100%			
2-Methyl naphthalene	89%	100%			
Biphenyl	100%	100%			
Dimethyl naphthalene	100%	100%			
acenaphthene	100%	100%			
Dibenzofuran	100%	100%			
nC16	100%	100%			
fluorene	100%	100%			
nC17	93%	100%			
phenanthrene	100%	100%			
anthracene	96%	100%			
nC19	100%	100%			
nC20	100%	100%			
fluoranthene	100%	100%			
nC21	100%	100%			
pyrene	100%	100%			

XAD-4 As an Organic Scrubber

- XAD-4 coated on metal denuder
- Total carbon test on quartz filter
- NIOSH 5040 method
- Sunset Labs Instrument Thermal Optical Analyzer

Future Research

- Non-particulate coating
 - Non-particulate porous film
 - Elimination of carbon artifact for TC
 - Eliminate particles bias
 - Ability to dope for selectivity
- Carbon coating
 - Great organic scrubber

Photo of Non-Particulate Coated Denuder

Conclusion

- Denuders technology has become an important part of PM2.5 speciation.
- XAD-4 is currently being evaluated for organic speciation such as PAHs.
- More research is needed to find more selective coatings for organic speciation of classes of compounds.

Acknowledgements

- Len Stockburger, PhD, USEPA
- Dr. Lara Gundel, PhD, LBNL
- Dave Smith, PhD, Sunset Labs
- Technology possible by Licensing agreement # L-99-1278
 between Restek and Lawrence Berkeley National Laboratory