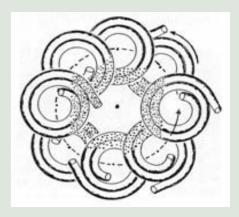


Making liquid stationary phases available for high purity chromatography purification at all scales

The difference is the amount of active stationary phase

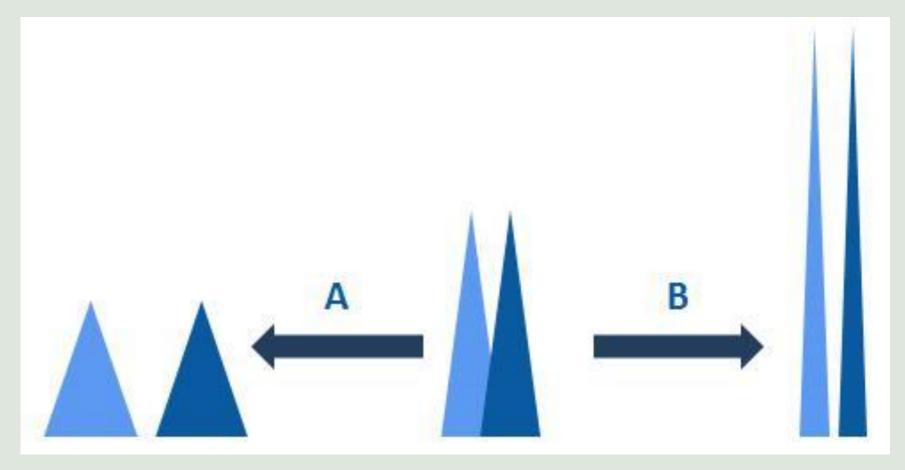
Key benefits of liquid stationary phases


- High mass and volume injection loadings
- Improved handling of sample solubility issues
- Ease and cost of scale-up
- Extremely low solvent usage
- Total sample recovery
- Reduced sample preparation
- New elution strategies

What is HPCCC?

High Performance Countercurrent Chromatography

- Crude material is partitioned between two immiscible layers of solvent phases
- Centrifugal rotation around 2 axis creates a planetary motion that causes rapid mixing and the separation of phases every revolution
- The stationary phase (SP) is retained by hydrodynamic force field effect
- The mobile phase (MP) is pumped through the column
- Many successive liquid-liquid extractions occur enabling purification of the crude material to occur



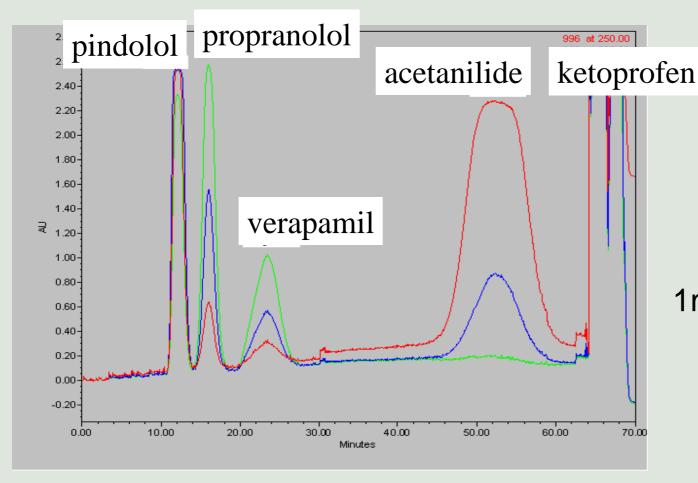
A complimentary and orthogonal liquid chromatography technique

Using selectivity (A) rather than efficiency (B)

We achieve this by providing High Performance CCC instruments

- These allow high resolution purifications at high mobile phase flow rates
- Provide a range of instruments from milligram to multi-kilo

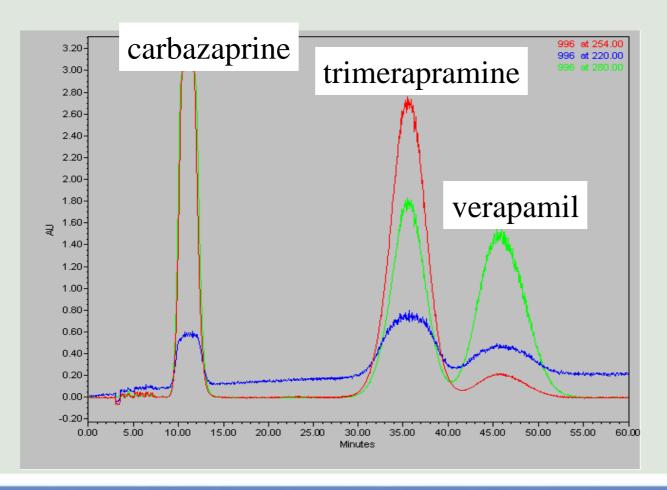
Wide range of application



Typical HPCCC Applications

- Provides orthogonality to existing separation processes
- Small molecule purification
 - Wide range of targets: synthetics, natural products, peptides
- Preparative separations
 - Highly predicatable scale up, high throughput, low solvent use
- "Difficult" samples
 - Crude samples, problematic solubility
- Low concentration component isolation
 - Impurities or natural extract

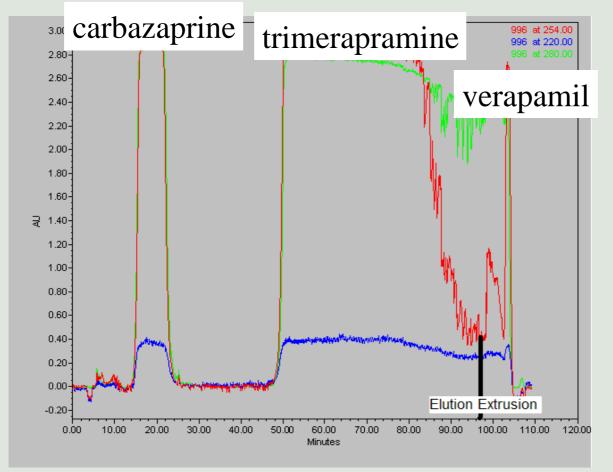
Mixed Polarity Synthetic Standards



SS11 + 0.1%TFA RP mode analytical coil

1mg of each standard loaded in 1ml (total 5mg)

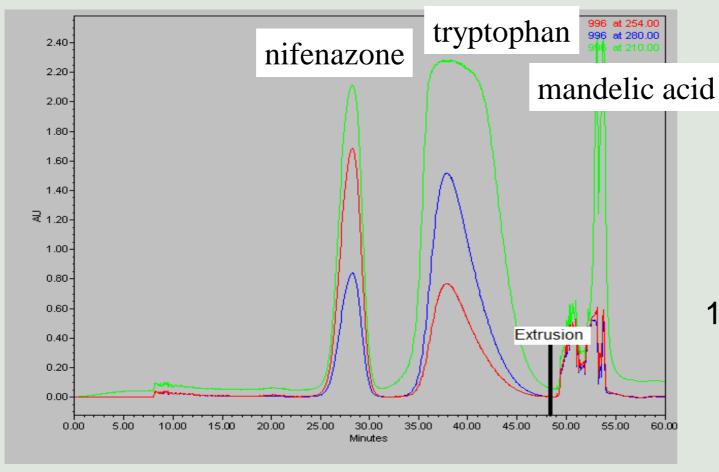
Non-polar Synthetic Standards



SS14 NP mode analytical coil

1mg of each standard loaded in 1ml (3 mg total)

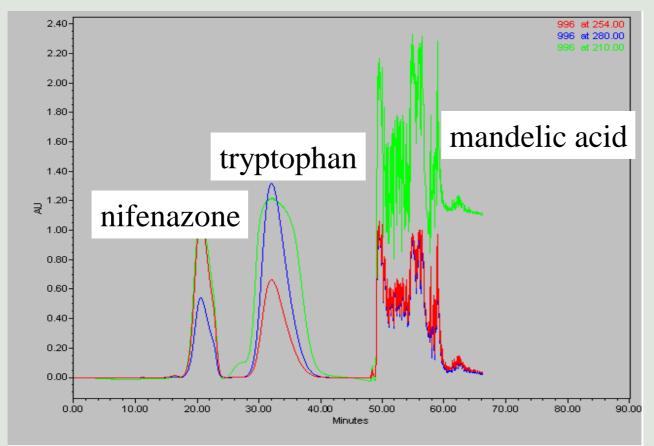
Non-polar Synthetic Standards – 30 times scale-up



SS14 NP mode analytical coil

30mg of each standard loaded in 1ml total

Polar Standards



SS01 + TFA NP mode analytical coil

1mg of each standard loaded in 1ml (3 mg total)

Polar Standards – 6 times Scale-up

SS01 + TFA NP mode preparative coil

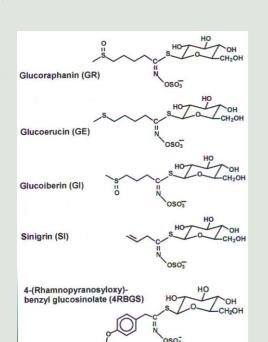
6mg of each standard loaded in 6ml total

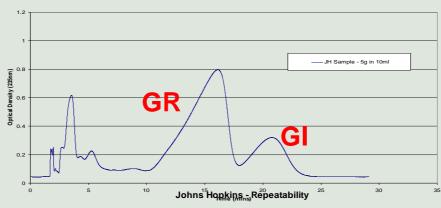
Preparative separations

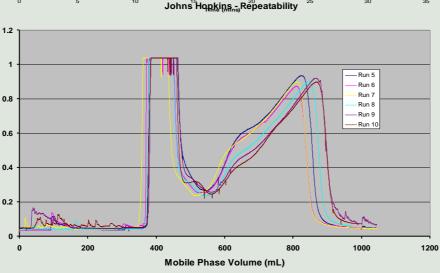
Synthetic compound application

- DE Centrifuge: Midi
- Type of separation: Hydrophobic (Non-polar)
- Crude loading per injection: 25 grams
- Target compound isolated per injection: 6 grams (average)
- Purity: > 92%
- Recovery: >95%
- Separation time: 25 minutes
- Total quantity of crude processed: 9 kg
- Total solvent used: 468 litres

Natural product application

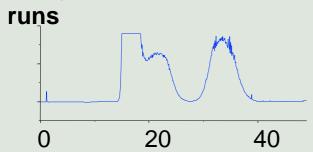

- DE centrifuge: Maxi
- Type of separation: Hydrophilic (polar)
- Crude loading per injection: 160 grams
- Target compound isolated per injection: 23.6 grams
- Purity: >95%
- Recovery: >90%
- Separation time: 25 minutes
- Total quantity of crude processed: 6.7 kg
- Total solvent used: 456 litres

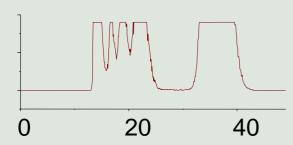



Difficult separations

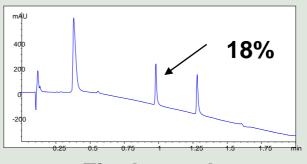
Separation of Glucosinolates

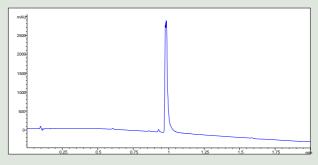
- •52.6g from 0.59kg
- •34 runs
- •47%w/w sample conc
- •17g/run sample loading
- •98.5% pure
- •3 days




Low concentration components

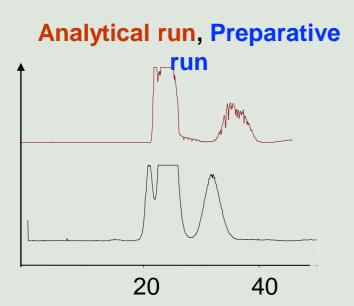
Impurity isolation for identification purposes

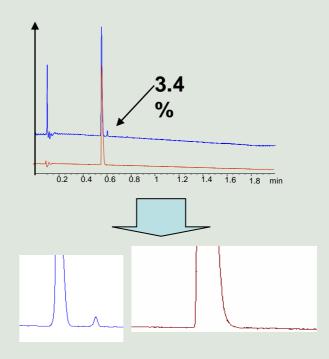

Analytical and Preparative



88% yield, 98% purity based on HPLC-UV

Starting material


Final sample



Courtesy of Pfizer UK

Minor impurity removal

92% yield, 99.9% purity on HPLC (impurity not detected)

Courtesy of Pfizer UK

Reduced Sample Preparation

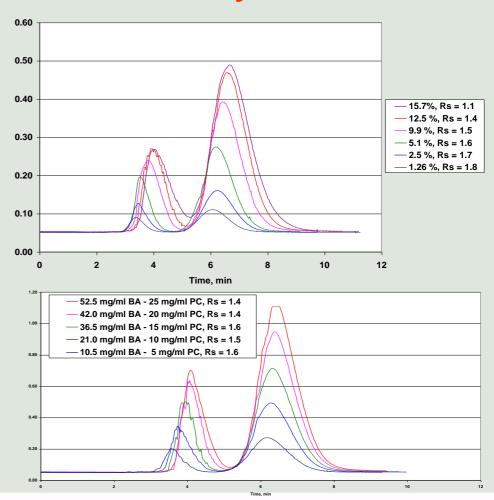
Viscous syrup

Crude extract including precipitates

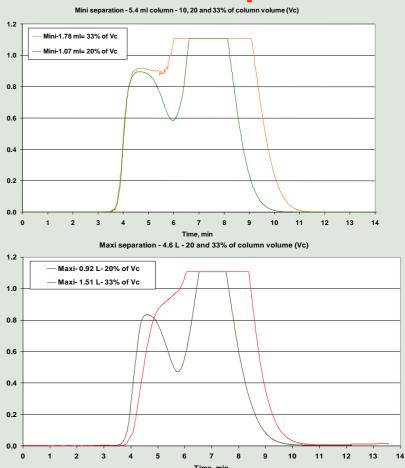
Loading capacity up to 50%w/w depending on solubility

Scale up

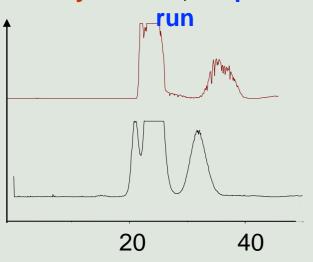
Scale-up is simply volumetric

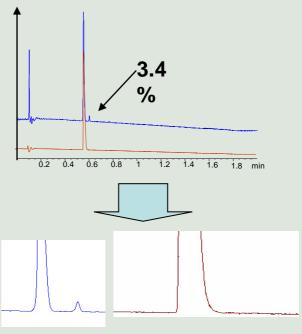

- You use the ratio of the column volumes that you are scaling between
- For example, 20ml column to 120ml column would be 1:6
- For complete scale-up simply multiply
 - 1. the sample volume by this ratio
 - 2. The mobile phase flow rate by this ratio

Performed and optimised at analytical scale


DE Mini

Directly transferred to the kilo/pilot scale

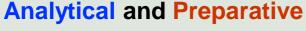


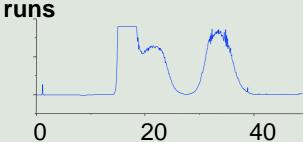


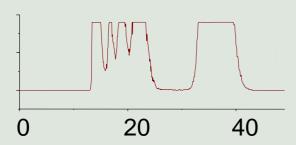
Analytical to semi-preparative scale-up

Minor impurity removal to obtain high purity product - Scale-up x26, from 300 mg on a 37 mL coil to 7.8g on a 950 mL coil

Analytical run, Preparative

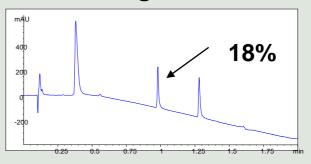

92% yield, 99.9% purity on HPLC (impurity not detected)

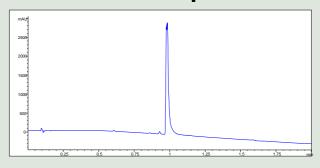

Courtesy of Pfizer UK



Analytical to semi-preparative scale-up

Impurity isolation for identification purposes - Scale-up x26, from 200 mg on a 37 mL coil to 5.2g on a 950 mL coil





88% yield, 98% purity based on HPLC-UV

Starting material

Final sample

Courtesy of Pfizer UK

Literature Scale-up Examples

	N /	Ι Λ	X
	IN /I		VI
			\sim
	IVI	/ N	

n=2 GR, glucoraphinin n=1 GI, glucoiberin

glucoraphinin(GR)

Propanol:CH ₃ CN:AS:Water	Н
(1.0:0.5:1.2:1.0)	

Column volume loading

Phase System

Loading/injection

Target Compound/injection

Cycle Time

Total crude processed

Total # runs

Total Solvent Usage

Propanol:CH ₃ CN:AS:Water
(1.0:0.5:1.2:1.0)

115g crude in 230mL

5%

23.6g

25min

8kg

42

420L

magnolol honokiol

honokiol

lep:EtOAc:MeOH:Water (1.0:0.4:1.0:0.4)

50g crude in 190mL

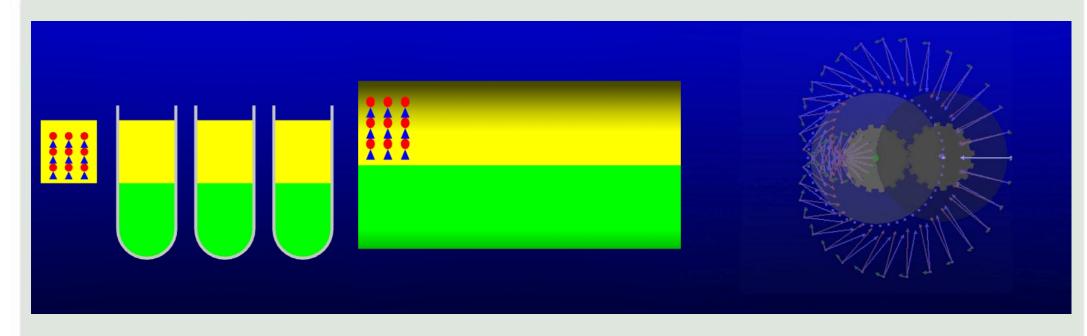
5%

20g

20min

150a

30L


- 1) Sutherland, I.A., J. Chrom. A, 1151 (2007), 6-13:
- 2) 2) Fisher, D., Garrard, I.J., Heuvel, R. van den, Chou, F.E., Fahey, J.W., J. Liq. Chrom. Rel. Tech., 28 (2005), 1913-1922:
- 3) 3) Chen, L. et al., J. Chrom. A, 1142 (2007), 115-122.

Understanding HPCCC

CCC mechanism of separation is partitioning

Test tubes

A column

HPCCC Instrument

Key concepts in HPCCC

Mechanism of separation

- Separation of compounds in HPCCC is based on liquid-liquid distribution
- Purification occurs because of the different solubility of the components in the liquid mobile and stationary phases
- Compound retention determined by the distribution ratio, D

$$D = \frac{[stationary phase]}{[mobile phase]}$$

D can be calculated by partitioning studies

Retention is highly predictable

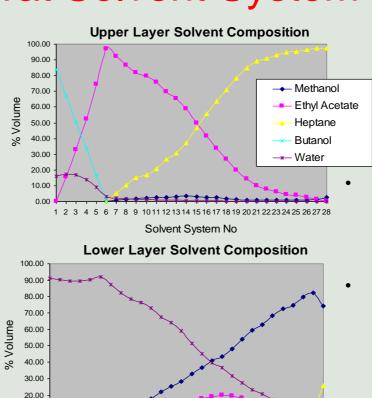
For, $V_C = 17.6 \text{mL}$ $V_S = 13.4 \text{mL}$ Stationary phase fraction, $S_f = 0.75$ 1.2 ¬ $V_{R} = V_{C} + (D - 1)V_{S}$ 0.8 -0.6 D=2 $0.4 - V_{\rm M}$ D=40.2 -0.2 0 20 10 30 40 50 60 70 80 90 Elution Volume, V_R

HPCCC Run Modes

- Reverse phase (RP) Stationary phase (SP) is upper phase (UP)
 - Mobile phase (MP) is lower phase (LP)
 - · Advantages: Direct analysis of fractions without need to vac down
- Normal phase (NP) Stationary phase (SP) is lower phase (LP)
 - Mobile phase (MP) is upper phase (UP)
 - · Advantages: Easier concentration of fractions
 - NP is a good starting point for method development.
 - . If unsuccessful, switching to RP can potentially improve resolution.
 - · Advanced run modes: elution-extrusion, pH zone refining

Method Development

Solvent System Selection


HEMWat solvent systems are suitable for the majority of applications

- 4 components Heptane(or hexane), ethyl acetate, methanol & water
- Forms 2 immiscible phases
 - Denser lower phase (LP) comprising mostly methanol and water
 - Lighter upper phase (UP) of heptane and ethyl acetate
- Butanol, ethyl acetate and water provides separation in more polar applications
- Additives Buffers, acids bases expand the selectivity of HEMWat solvent systems
- No pH-column stability issues as inert tubing no solid

HEMWat Solvent System

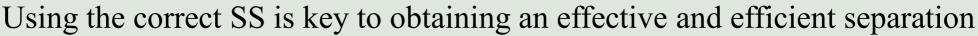
SS		Heptane	FtOAc	МеОН	Butanol	Water
	ł					
1		0	0	0	5	5
2		0	1	0	4	5
3		0	2	0	3	5
4		0	3	0	2	5
5		0	4	0	1	5
6		0	1	0	0	1
7	More	1	19	1	0	19
8	Polar	1	9	1	0	9
9		1	6	1	0	6
10		1	5	1	0	5
11		1	4	1	0	4
12		1	3	1	0	3
13		2	5	2	0	5
14		1	2	1	0	2
15		2	3	2	0	3
16		5	6	5	0	6
17		1	1	1	0	1
18		6	5	6	0	5
19		3	2	3	0	2
20		2	1	2	0	1
21		5	2	5	0	2
22		3	1	3	0	1
23		4	1	4	0	1
24		5	1	5	0	1
25	Less	6	1	6	0	1
26	Polar	9	1	9	0	1
27		19	1	19	0	1
28		1	0	1	0	0

Provides separation for the majority of compounds

Good solubility of a wide range of materials

I.J.Garrard. L.Janaway, D.Fisher, J. Liq. Chrom. Rel. Tech., 30 (2007), 151-163

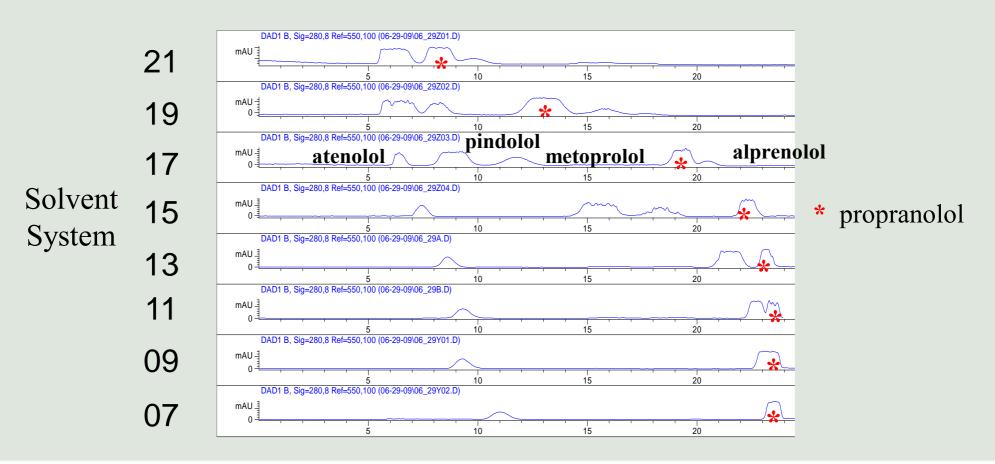

10.00



Providing separation solutions that make a difference

Solvent System No

Solvent System Selection


Automated HPCCC Solvent System Screening

- Automated, unattended operation using any standard analytical HPLC systems (Agilent, Shimadzu, etc.)
- On-demand mixing of solvent systems using quaternary HPLC pumps
- 2 to 3 hours/solvent system screen:
 - 5 solvent systems
 - normal and/or reverse phase separation modes
 - any pH can be used

Automated Solvent System Screening Applied to a set of 5 b-Blockers – RP, pH9.5

Range of HPCCC equipment

DE HPCCC Instrument Range

57mm DVW		
(0)		
No.	73	
		. ,

Loading
(grams/run)
Flow rate (mL/min)
Rotational Speed
240g (RPM)
Coil Volume (mL)

<u>Spectrum</u>	<u>Midi</u>	<u>Maxi</u>	
up to 2	5 – 40	500-1500	
0.5 – 10	30 – 50	500 – 1500	
1600	1400	850	
20 and 140	38 and 940	4600 or 18000	

Integrated solutions

DE Solutions & Capabilities

Who are we?

- UK manufacturer of High Performance Countercurrent Chromatography instruments
- Instruments are sold and supported internationally from UK and US offices plus a network of specialist international distributors
- Instrument range Analytical, Preparative and Pilot plant/ Manufacturing scales
- Customer education & training, sample feasibility studies available internationally

Products and engineered solutions for end-user use

DE Capabilities provided

- Product development and engineering design
- Feasibility studies
- Gram to Kilo separations to GLP
- Training
- Demonstration

A diverse range of customers

Key benefits of liquid stationary phases

- High mass and volume injection loadings
- Improved handling of sample solubility issues
- Ease and cost of scale-up
- Extremely low solvent usage
- Total sample recovery
- Reduced sample preparation
- New elution strategies

Thank you for your attention Any questions?

