Targeted Signal Enhancement (TSE)

A Powerful Means of Boosting Process GC Detection Limits by 1-2 Orders of Magnitude

R. Aaron Eidt (email: eidt@dow.com)

Dow Chemical Canada Inc.

Fort Saskatchewan, AB, Canada

Presented at IFPAC® 2007, Baltimore, MD, USA

What's the Problem?

- ★ Some Process GC Applications Require More Sensitivity than what Conventional GC can Deliver
 - ◆ Ambient Air Monitoring
 - ◆ Trace analysis of feed streams for catalyst poisons
 - ◆ Trace water analysis for corrosion prevention
 - ◆ Finished Product Quality
 - Water Quality/Environmental

What's the Problem?

- → Need a means to achieve lower detection limits
 - ◆ Sample enrichment techniques: P/T, SPME, Headspace, etc.
 - ◆ New detector technologies: PDD, DMD, DBD etc.
- → These solutions often lack the ruggedness, stability & low maintenance needed for a process analyzer
- → Need a Simple & Rugged Solution

What is TSE?

- ★ A process whereby a broad GC peak is cryotrapped & then vapourized into a narrower, taller peak
- **→** The Result:
 - ◆ Increased signal-to-noise ratio
 - ◆ The ability to measure much lower concentrations than before

TSE Background

- → TSE concept demonstrated in '97 by Marriott & Kinghorn
 - ◆ Required Liquid Cryogen
- → Not widely used in process GC's for continuous use
 - ◆ Due to Need for Liquid Cryogen
 - Expensive, High Maintenance
 - ◆ Need for Hazardous Area Classification
- → Great concept, but need it to be rugged for on-line use
 - ◆ Eliminate the Need for Liquid Cryogen
 - ◆ Low Maintenance, Rugged

TSE Design for On-line Use

"Things should be made as simple as possible, but no simpler."

~ Albert Einstein

TSE Design for On-line Use

- → Eliminate the Need for Liquid Cryogen
- → Employ Vortex Cooling for Cryotrapping
 - ◆ Requires only 80-100 psig Compressed Air
 - ◆ Typically in abundant supply in process environments
 - ◆ Achieves -40°C temperatures
 - ◆ Encased & Insulated Quiet Operation
- → Employs GC Oven-Heated Air for Vapourizing
 - No additional heat source required
- → Timing of Cryotrapping/Flashing controlled by GC
- → Capillary column phases used as the trapping medium
- → Assembled with mostly off-the-shelf parts

TSE Design

Jan 30/07 - RAE

Dow Chemical Canada Inc.

TSE Design Advantages

- → 100% Pneumatic (no Hazard Class. Barriers)
- **→** Retrofittable to most any GC
- **→** Absurdly Simple
 - ◆ One Moving Part: 3-way valve to redirect air flow
 - ♦ Virtually Maintenance Free
- → Small Can fit inside a Process GC Oven
 - ◆ Dimensions: 6.5" x 3.5" x 2"
- **→** Quiet Operation
- **+** Economical

GC/TSE Oven Schematic

TSE of Benzene

0.5

500000

400000

300000

200000

100000

0

0

Time (min) 2

3.5

3

2.5

$TSE \ of \ C_4 \ Hydrocarbons$

TSE of C₄ Hydrocarbons

TSE of C₂ Hydrocarbons

TSE of Methanol

Jan 30/07 - RAE

Dow Chemical Canada Inc.

15

TSE of Methanol

TSE of Water

TSE of Carbon Dioxide

TSE of Carbon Monoxide

TSE at Column Head

TSE Capabilities

★ Almost Any GC
 Analyte Can Be
 Signal-Enhanced
 by TSE

Some Analytes Successfully Enhanced by TSE:		
Acetylene	1,3-Butadiene	Hydrogen Sulphide
Ethylene	1,2,-Butadiene	Carbonyl Sulphide
Ethane	Isobutylene	Mercaptans
Cyclopropane	Ethyl Acetylene	Sulphides
Propane	n-Pentane	Formaldehyde
Propylene	n-Hexane	Acetaldehyde
n-Butane	Benzene	Ethylene Oxide
iso-Butane	Methyl Chloride	Methanol
1-Butene	Vinyl Chloride	Carbon Monoxide
cis-2-Butene	Ethyl Chloride	Carbon Dioxide
trans-2-Butene	Carbon Tetrachloride	Water

TSE Precision at 5 ppm

Precision using TSE at 5 ppm

TSE Linearity

Linearity of Acetaldehyde by TSE

TSE Performance

- **→**TSE operated continuously for over 1 year with zero maintenance required
- **→** Good Precision & Linearity
 - ◆ Equal to or better than conventional GC methods for trace analyses
 - ◆ Sometimes better due to improved peak shape

TSE Shortcomings

- → Vortex cooler requires min. 80 psig air pressure
 - ◆ Insufficient cooling = Analyte breakthrough
 - ◆ Monitor TSE Trap Temp & Alarm
- → Undesirable impurities cryotrapped as well
 - Carrier gas impurities, Column bleed, etc.
 - ◆ Requires short length of column after TSE trap
 - Ineffective if impurity is same as analyte (e.g. Water in carrier gas)
- → Cannot trap extremely light analytes (yet)
 - ◆ O₂, N₂, CH₄, H₂, Ar...
- → Generates peaks 0.5-1.0 sec wide
 - ◆ Best for enhancing peaks > 2 sec wide
- → Potential to overload TSE trap exists

Summary

- **→** Vortex Cooler-Driven TSE:
 - ◆ Can signal-enhance almost any process GC analyte
 - ◆ Provides the capability to measure process GC analyte concentrations as much as 78x lower than before
 - ◆ Is Reliable, Inexpensive & very Low Maintenance
 - ◆ Offers the robustness of packed columns with the peak widths of capillary columns
 - ◆ Can be retrofitted to most common process GC's
 - ◆ Is absurdly simple, yet powerful
 - Greatly expands the capability of process GC

Targeted Signal Enhancement (TSE)

A Powerful Means of Boosting Process GC Detection Limits by 1-2 Orders of Magnitude

R. Aaron Eidt (email: eidt@dow.com) Dow Chemical Canada Inc. Fort Saskatchewan, AB, Canada

Presented at IFPAC® 2007, Baltimore, MD, USA

Jan 30/07 - RAE

Dow Chemical Canada Inc.

Website NEW: www.chromalytic.com.au F-Mail: info@chromtech.net.au tet: 03 9762 2034

What's the Problem?

→ Some Process GC Applications Require More Sensitivity than what Conventional GC can Deliver

- ◆ Trace analysis of feed streams for catalyst poisons
- ◆ Trace water analysis for corrosion prevention
- Finished Product Quality
- Water Quality/Environmental

What's the Problem?

- → Need a means to achieve lower detection limits
 - ◆ Sample enrichment techniques: P/T, SPME, Headspace, etc.
 - ◆ New detector technologies: PDD, DMD, DBD etc.
- → These solutions often lack the ruggedness, stability & low maintenance needed for a process analyzer
- → Need a Simple & Rugged Solution

What is TSE?

- ★ A process whereby a broad GC peak is cryotrapped & then vapourized into a narrower, taller peak
- **→** The Result:
 - ◆ Increased signal-to-noise ratio
 - ◆ The ability to measure much lower concentrations than before

TSE Background

- → TSE concept demonstrated in '97 by Marriott & Kinghorn
 - ◆ Required Liquid Cryogen
- → Not widely used in process GC's for continuous use
 - ◆ Due to Need for Liquid Cryogen
 - Expensive, High Maintenance
 - ◆ Need for Hazardous Area Classification
- → Great concept, but need it to be rugged for on-line use
 - ◆ Eliminate the Need for Liquid Cryogen
 - ◆ Low Maintenance, Rugged

TSE Design for On-line Use

"Things should be made as simple as possible, but no simpler."

~ Albert Einstein

TSE Design for On-line Use

- → Eliminate the Need for Liquid Cryogen
- → Employ Vortex Cooling for Cryotrapping
 - ◆ Requires only 80-100 psig Compressed Air
 - Typically in abundant supply in process environments
 - ◆ Achieves -40°C temperatures
 - ◆ Encased & Insulated Quiet Operation
- → Employs GC Oven-Heated Air for Vapourizing
 - No additional heat source required
- → Timing of Cryotrapping/Flashing controlled by GC
- → Capillary column phases used as the trapping medium
- → Assembled with mostly off-the-shelf parts

TSE Design

Jan 30/07 - RAE

Dow Chemical Canada Inc.

TSE Design Advantages

- → 100% Pneumatic (no Hazard Class. Barriers)
- → Retrofittable to most any GC
- **→** Absurdly Simple
 - ◆ One Moving Part: 3-way valve to redirect air flow
 - ◆ Virtually Maintenance Free
- → Small Can fit inside a Process GC Oven
 - ◆ Dimensions: 6.5" x 3.5" x 2"
- → Quiet Operation
- **→** Economical

GC/TSE Oven Schematic

GC Oven 10-port Backflush Helium TSE Sample IN Analytical Sample Column Loop Sample UO UT Detector Inject Valve **TSE Unit Fits** Backflush **Inside GC Oven** Column Backflush Vent

ADC1 B, ADC1 CHANNEL B (C:\HPCHEM\2\DATA\TSEIDF\ACET0315.D)

TSE of C₄ Hydrocarbons

Jan 30/07 - RAE

Dow Chemical Canada Inc.

TSE of C₄ Hydrocarbons

TSE of C₂ Hydrocarbons

TSE of Methanol

Jan 30/07 - RAE

15

TSE of Methanol

TSE of Water

TSE of Carbon Dioxide

Jan 30/07 - RAE

Dow Chemical Canada Inc.

18

TSE of Carbon Monoxide

TSE at Column Head

TSE Capabilities

★ Almost Any GC
 Analyte Can Be
 Signal-Enhanced
 by TSE

Some Analytes Successfully Enhanced by TSE:		
Acetylene	1,3-Butadiene	Hydrogen Sulphide
Ethylene	1,2,-Butadiene	Carbonyl Sulphide
Ethane	Isobutylene	Mercaptans
Cyclopropane	Ethyl Acetylene	Sulphides
Propane	n-Pentane	Formaldehyde
Propylene	n-Hexane	Acetaldehyde
n-Butane	Benzene	Ethylene Oxide
iso-Butane	Methyl Chloride	Methanol
1-Butene	Vinyl Chloride	Carbon Monoxide
cis-2-Butene	Ethyl Chloride	Carbon Dioxide
trans-2-Butene	Carbon Tetrachloride	Water

TSE Precision at 5 ppm

Precision using TSE at 5 ppm

TSE Linearity

Linearity of Acetaldehyde by TSE

TSE Performance

- **→**TSE operated continuously for over 1 year with zero maintenance required
- **→** Good Precision & Linearity
 - ◆ Equal to or better than conventional GC methods for trace analyses
 - ◆ Sometimes better due to improved peak shape

TSE Shortcomings

- → Vortex cooler requires min. 80 psig air pressure
 - ◆ Insufficient cooling = Analyte breakthrough
 - ◆ Monitor TSE Trap Temp & Alarm
- → Undesirable impurities cryotrapped as well
 - ◆ Carrier gas impurities, Column bleed, etc.
 - ◆ Requires short length of column after TSE trap
 - Ineffective if impurity is same as analyte (e.g. Water in carrier gas)
- → Cannot trap extremely light analytes (yet)
 - ◆ O₂, N₂, CH₄, H₂, Ar...
- → Generates peaks 0.5-1.0 sec wide
 - ◆ Best for enhancing peaks > 2 sec wide
- → Potential to overload TSE trap exists

Summary

- **→** Vortex Cooler-Driven TSE:
 - ◆ Can signal-enhance almost any process GC analyte
 - ◆ Provides the capability to measure process GC analyte concentrations as much as 78x lower than before
 - ◆ Is Reliable, Inexpensive & very Low Maintenance
 - Offers the robustness of packed columns with the peak widths of capillary columns
 - Can be retrofitted to most common process GC's
 - ◆ Is absurdly simple, yet powerful
 - ◆ Greatly expands the capability of process GC