

STUDY OF CHEMICAL AND PHYSICAL ADSORPTION PROPERTIES OF MOISTURE, SULFUR, AND MERCURY STREAMS THROUGH A VARIETY OF TUBING SUBSTRATES

Gary Barone; Marty Higgins; David Smith:

Ted Neeme: Spectra Gases

Analytical Solutions for Process Control & Compliance

The 53rd Annual Symposium of the Analysis Division Calgary, Alberta Canada; 20-24 April 2008

- Functionalized silicon coating process and characteristics
- Characterization of sulfur adsorption in sample holding and transfer
- Effect of moisture uptake and release
- Mercury adsorption by stainless steel
- Conclusion

Functionalized Amorphous Silicon

- Study focused on functionalized amorphous silicon because:
- Durable coating for a variety of surfaces
- High temperature capability
- Addresses physisorption and chemisorption issues
 - Highly inert
 - Reduce activity of substrate (i.e., stainless steel) to minimize adsorption of compounds
 - Coated system products deliver better reproducibility and accuracy by reducing hold-up of active compounds

Chemical Vapor Deposition Process

- Thermal decomposition of silanes
- Amorphous silicon deposition
- Functionalization of surface if desired
- Process
 - Clean (caustic surfactant; ultrasonic)
 - Vacuum
 - 400°C
 - Applied in vessel or oven chamber
- Total 3D coverage, not line-of-sight
- High volume (size dependent)

AD 2008: Analysis Division Symposium Calgary, AB Canada; 20-24 April 2008

Slide 4

Coating Cross Section

Substrate

Sample 24, Side 2, field width = 285 micrometers.

AD 2008: Analysis Division Symposium Calgary, AB Canada; 20-24 April 2008

Auger Depth Profile

AD 2008: Analysis Division Symposium Calgary, AB Canada; 20-24 April 2008

Australian Distributors Importers & Manufacurers www.chromtech.net.au

Secondary Enhancements

- Amorphous silicon deposition
 - -Up to 20um in depth
 - Multiple layers to eliminate pin-holes
 - -Enhances corrosion resistance
- Additional organic functionalization
 - Decrease of pin-holes
 - Improving surface inertness

Patented Functionalization

Coating Appearance

AD 2008: Analysis Division Symposium Calgary, AB Canada; 20-24 April 2008

Slide 9

Effect of sulfur Sulfur Issues

- Unwanted reactivity
- Corrosion contributes to sulfuric acid formation
- Adsorbs to stainless steel surfaces
 - Analytical reliability issues
 - Delayed response
 - Memory effects

- Functionalized silicon coating improves response
 - Reduces adsorption effects
 - Improves analytical reliability
 - Faster cycle times and increased accuracy

Sulfur Flow-through data

- 100' 1/8" x .020" tubing
 - Standard seamless 316L
 - Electropolished 316L
 - a-silicon coated EP 316L
- 0.5ppmv methylmercaptan in He
- SCD detection
- Data courtesy of Shell Research Technology Centre, Amsterdam

Example of tubing characteristics: Chemisorption major contributor

Adsorption of CH 3SH on different tubings

A

AD 2008: Analysis Division Symposium Calgary, AB Canada; 20-24 April 2008

HROM 25 +61(0)3 9762 2034

Australian Distributors Importers & Manufacurers www.chromtech.net.au

Website NEW: www.chromalytic.com.au E-mail: info@chromtech.net.au Tel: 03 9762 2034 . . . in AUSTRALIA

Inert surface minimizes "memory" effect

HRON 2516+61(0)3 9762 2034

Australian Distributors Importers & Manufacurers www.chromtech.net.au

Website NEW: www.chromalytic.com.au E-mail: info@chromtech.net.au Tel: 03 9762 2034 . . . in AUSTRALIA

Effect of moisture

- Moisture Issues
 - Sample hold-up
 - Unwanted reactivity- Polar water molecules on surface increase activity of surface
 - Corrosion contributes to acidic/basic formation during sampling
 - Example: SO₂ to HSO₃ and H₂SO₄
 - NH₃ to NH₄OH

AD 2008: Analysis Division Symposium Calgary, AB Canada; 20-24 April 2008

- Hydrophobic coating decreases adsorption of water
 - Quicker removal of moisture through sampling lines
 - Components less susceptible to corrosion
 - Faster cycle times and increased accuracy with less moisture hold-up in tubing

Moisture Data

- 1ppm moisture, 0.35slpm
- Amount of time to equilibrate a 1ppm moisture sample through 100 feet of dry tubing:
 - Commercial Seamless 316L tubing:
 - 180 minutes (96% equilibrated)
 - Electropolished Seamless 316L tubing:
 - 60 minutes (98% equilibrated)
 - Functionalized a-silicon coated e-polished seamless
 316L tubing
 - 30 minutes (98% equilibrated)

Wet-Up 50% faster response

A

AD 2008: Analysis Division Symposium Calgary, AB Canada; 20-24 April 2008

Slide 18

Moisture Data (cont)

- Time to dry 100' tubing wetted with 1ppm of moisture when connected to a dry purge
 - Commercial Seamless 316L tubing:
 - 175 minutes
 - Electropolished Seamless 316L tubing:
 - 65 minutes
 - Functionalized a-silicon coated e-polished seamless 316L tubing
 - 35 minutes

Dry-Down 50% faster response

AD 2008: Analysis Division Symposium Calgary, AB Canada; 20-24 April 2008

> HROM = 1 y tic +61(0)3 9762 2034 ECH no logy Pty Ltd

Australian Distributors

Effect of Mercury

- Stack mercury emissions exist in 3 forms
 - Elemental mercury (Hg)
 - 2+ Oxidation state (Hg++)
 - Attached to particulate matter
- Hg⁺⁺ reacts with stack compounds and stainless steel surfaces making analysis unreliable
- Tube Wall Adsorption
 - Physical Adsorption (Physisorption)
 - Chemical Adsorption (Chemisorption)

ISA

Effect of Mercury

- Problem: Mercury is oxidized by steel surfaces resulting in loss during holding and transfer
- Functionalized amorphous silicon
- Improved by sound analytical design
 - Heat trace tube
 - Short tube runs
 - Eliminate dips/pockets
 - Maintain target flow
- Electropolished Surfaces (Physisorption)
- Teflon

Mercury Adsorption by Stainless Steel

- 5 ug/m³ Hg Standard
 - Spectra Gasses Inc.
- 1 Gallon Sample Cylinder 1800psi DOT rated
 - Swagelok Corp
- NIST Traceable
- Nominal Temp. 70 °F
- Test Cycle Day 0,7,19,50
- Direct Interface Gas Sampling
- Atomic Adsorption Detector
- Functionalized Silicon Coated Regulator and Tube

Comparison of Hg Stability in 304SS vs. Functionalized Silicon Coated Cylinders

Test Day	Avg response	Loss vs. Day 0	Avg response	Loss vs. Day 0
	304 SS cylinders ug/m3		Functionalized Silicon ug/m3	
0	5.65	-	6.45	-
7	3.25	42%	6.1	5%
19	2.05	64%	6	7%
50	1	82%	5.8	10%

AD 2008: Analysis Division Symposium Calgary, AB Canada; 20-24 April 2008

Mercury 50 Day Stability Chemisorption major contributor

AD 2008: Analysis Division Symposium Calgary, AB Canada; 20-24 April 2008

Current Applications

- Sulfurs, Moisture and Mercury: Application areas
 - Coal Fired Power Plants
 - Natural Gas; LPG
 - Ethylene; Propylene
 - Fuel Cells
 - Petrochemical Process Streams
 - Beverage Grade CO₂ (Soda/Beer)
 - Flavor (Wine/Beer)
 - Moisture Monitors
 - Sample Transfer

AD 2008: Analysis Division Symposium Calgary, AB Canada; 20-24 April 2008

Conclusion

- Functionalized silicon surfaces can improve mercury, moisture and sulfur analytical response
- Improve sulfur & sulfur species response in transfer systems by 97%
- Low level sulfur species stable for 7 days in static containment systems
- Moisture dry down performance improved by 50%

Conclusion

- Reduce mercury adsorption by 70% in static containment systems
- Sulfur compound transfer heavily dependent on surface chemistry vs. surface roughness
- Moisture hold-up and transfer a function of both surface chemistry and surface roughness

