REFERENCE STANDARDS PHARMACEUTICAL MATERIALS

USP, European Pharmacopoeia

USP <467> cont'd

These Class 1 mixtures reflect the changes made in USP24/NF19 effective January 1, 2000, and USP23/NF18 effective January 1, 1995 to December 31, 1999. While these mixtures do not meet the current USP guidelines, many labs still use these mixtures to obtain a detectable benzene peak for the direct injection methods, Method I and Method V.

USP <467> Calibration Mix #7 (4 components)

chloroform	60µg/mL	methylene chloride	600
1,4-dioxane	380	trichloroethene	80
In dimethyl sulfoxide, 1mL/	'ampul		

cat. # 36009 (ea.)

USP <467> Calibration Mix #6 (4 components)

chloroform	60µg/mL	methylene chloride	600
1,4-dioxane	380	trichloroethene	80
In methanol, 1mL/ampul			
	cat. # 36008	3 (ea.)	

USP <467> Calibration Mixture #5 (5 components)

benzene chloroform 1,4-dioxane	2μg/mL 60 380	methylene chloride trichloroethene	600 80
In dimethyl sulfoxide, 1mL/	ampul		

cat. # 36007 (ea.)

USP <467> Calibration Mixture #4 (5 components)

benzene	2μ g/mL	methylene chloride	600
chloroform	60	trichloroethene	80
1,4-dioxane	380		
In methanol, 1mL/ampul			
	cat. # 360	06 (ea.)	

USP <467> Calibration Mixture #2 (5 components)

benzene chloroform 1,4-dioxane	100µg/mL 50 100	methylene chloride trichloroethene	500 100
In methanol, 1mL/ampul	ast # 2600	10 (00)	

USP <467> Calibration Mixture #3 (5 components)

benzene chloroform 1,4-dioxane	100µg/mL 50 100	methylene chloride trichloroethene	500 100
--------------------------------------	-----------------------	---------------------------------------	------------

In dimethyl sulfoxide, 1mL/ampul

cat. # 36004 (ea.)

Ethylene Oxide

 500μ g/mL in dimethyl sulfoxide, 1mL/ampul cat. # 36005 (ea.)

Ethylene oxide is available in other solvents and concentrations. Request your custom formulation at standards@restek.com.

Get More!

Pharmaceutical Solutions Online

www.restek.com/pharma

Limit of Diethylene & Ethylene Glycol Standards

Meet new FDA Guidance for Industry: Testing of Glycerin for Diethylene Glycol with our new diethylene glycol (DEG) and ethylene glycol limit standards. This Guidance emphasizes the importance of screening raw material for the presence of diethylene glycol. Under cGMPs, drug manufacturers—not just glycerin manufacturers—must now test glycerin prior to use to prevent DEG-contamination in finished products. FDA has worked extensively with USP to modify the glycerin monograph and these standards support the revised USP method.

Glycerin Standard Mix (3 components)

Giyceiiii Staii			
diethylene glycol	0.5mg/mL	glycerin	20
ethylene glycol	0.5		
In P&T methanol, 1	.mL/ampul		(NEW!
	cat. #	31891 (ea.)	

Propylene Glycol Standard Mix (3 components)

i i opyiciic di	y coi o carraar	of Ivilia (5 components)	
diethylene glycol	0.5mg/mL	propylene glycol	20
ethylene glycol	0.5		
In P&T methanol, 1	LmL/ampul		(NEW!
	cat.	# 31892 (ea.)	

Sorbitol Standard Mix (2 components)

diethylene glycol	ethylene glycol
, ,,	, ,,
0.8mg/mL each in acetone:water (90:1	,, ,
cat. # :	31893 (ea.)

Limit of Diethylene & Ethylene Glycol Internal Standard Mix

Lilling of Diethylene & Ethylene Grycor internal Standard	4 14117
2,2,2-trichloroethanol	
10mg/mL in P&T methanol, 1mL/ampul	NEW!
cat. # 31894 (ea.)	

European Pharmacopoeia Method

The analysis of residual solvents in pharmaceutical products has changed, particularly for products being sold into Europe. The International Conference on Harmonization (ICH) *Guidelines for Residual Solvents* is becoming the international standard and is being adopted by more pharmacopeias, including the United States Pharmacopeia, every year. The ICH method and compound list is more extensive than any method previously used and poses new challenges. Compounds in Class 1 are solvents considered to be of highest risk and to be avoided in pharmaceutical manufacturing. Use of Class 2 compounds is to be limited, as they pose a lower, but present, threat to health. Compounds in Class 3 pose the lowest toxic potential and may be used routinely in manufacturing.

European Pharmacopoeia/ICH Class 1 Mix (5 components)

benzene	$2\mu g/mL$	1,1-dichloroethene	8
carbon tetrachloride	4	1,1,1-trichloroethane	1500
1,2-dichloroethane	5		

Prepared in water:dimethyl sulfoxide (90:10), 1mL/ampul cat. # 36228 (ea.)

European Pharmacopoeia/ICH Class 1 Mix (revised)

(5 components)			
benzene	2μ g/mL	1,1-dichloroethene	8
carbon tetrachloride	4	1,1,1-trichloroethane	10
1,2-dichloroethane	5		
In water:dimethyl sulfoxide	e (90:10), 1mL/a	ampul	

cat. # 36261 (ea.)

528 www.restek.com RFS

Mar 2011