

Figure 3 Restek stationary phases and recommended uses.

Alkyl Phases

- General purpose reversed phase columns rely on dispersive interaction to separate molecules.
- Elution order is hydrophilic to hydrophobic; increased chain length increases retention.

Modified Alkyl Phases

- Alkyl phases with modified bonding chemistry to increase polarity.
- Columns are compatible with 100% aqueous mobile phases.
- · Rely on dispersive interaction with additional hydrogen bonding.
- Aqueous columns show balanced retention and are a great starting point for method development.
- Polar embedded IBD columns provide good peak symmetry for bases and offer orthogonal selectivity to a C18.
- IBD phases are capable of mixed mode mechanisms and can operate in both reversed phase and HILIC modes.

Phenyl Phases

- Phenyl columns rely on dispersive and pi-pi $(\pi$ - π) interactions.
- Enhanced retention and selectivity are seen with aromatic, conjugated molecules, and compounds containing electron withdrawing ring substituents.
- Biphenyl and Aromax columns show more interaction and greater aromatic retention and selectivity, relative to conventional phenyl and phenyl-hexyl phases.

Polar Phases

- Polar phases rely on aromatic and dipole interactions.
- Cyano and PFP Propyl phases show increased retention for aromatic compounds and charged bases.
- PFP Propyl phases are commonly used for increased retention of ionic and basic compounds.
- Amino columns are commonly used for the analysis of saccharides.
- Silica columns are used for normal phase and HILIC separations.

Legend orthogonal selectivity to a C18 good choice for LC/MS HILIC compatible

HPLC Pump Pressure Conversion Table

Pressure	psi	atm	kg/cm²	torr	kPa	bar	inches Hg
1 psi =	1	0.068	0.0703	51.713	6.8948	0.06895	2.0359
1 atm =	14.696	1	1.0332	760	101.32	1.0133	29.921
1 kg/cm ² =	14.223	0.967	1	735.5	98.06	0.9806	28.958
1 torr =	0.0193	0.00132	0.00136	1	0.1330	0.00133	0.0394
1 kPa =	0.1450	0.00987	0.0102	7.52	1	0.0100	0.2962
1 bar =	14.5038	0.9869	1.0197	751.88	100	1	29.5300
1 in Hg =	0.49612	0.0334	0.0345	25.400	3.376	0.03376	1

Multiply units in the left-most column by the conversion factors listed in the columns to the right.

e.g., 10 psi x 0.068 = 0.68 atm

10 bar x 29.5300 = 295.300 inches Hg

www.restek.com

149