Derivatization Reagents

new!

Restek now offers a full line of derivatization reagents!

Silylation Derivatization Reagents

- Replaces active hydrogen, reducing polarity and making the compounds more volatile.
- · Increases stability of derivatives.

Silylation is the most widely used derivatization procedure for sample analysis by GC. In silylation, an active hydrogen is replaced by an alkylsilyl group such as trimethylsilyl (TMS) or *tert*-butyl-dimethylsilyl (*tert*-BDMS). Silyl derivatives are more volatile, less polar, and more thermally stable. As a result, GC separation is improved and detection is enhanced.

Both TMS and *tert*-BDMS reagents are suitable for a wide variety of compounds and can be used for many GC applications. Note that silylation reagents are generally moisture sensitive and must be sealed to prevent deactivation.

Compound	CAS#	cat.#		
MSTFA (N-methyl-N-trimethylsilytrifluoroacetamide)				
10-pk. (10x1g)	24589-78-4	35600		
25g Flex Tube	24589-78-4	35601		
MSTFA w/1% TMCS (N-methyl-N-trimethylsilytrifluoroacetamide				
w/1% trimethylchlorosilane	2)			
10-pk. (10x1g)	24589-78-4	35602		
25g Flex Tube	24589-78-4	35603		
BSTFA (N,O-bis[trimethylsilyl]trifluoroacetamide)				
10-pk. (10x1g)	25561-30-2	35604		
25g Flex Tube	25561-30-2	35605		
BSTFA w/1% TMCS (N,O-bis[trimethylsilyltrifluoroacetamide]				
w/1% trimethylchlorosilane	2)			
10-pk. (10x1g)	25561-30-2	35606		
25g Flex Tube	25561-30-2	35607		
MTBSTFA w/1% TBDMCS (N-methyl-N[tert-butyldimethylsilyl				
trifluoroacetamide] w/1% tert-butyldimethylchlorosilane)				
10-pk. (10x1g)	77377-52-7	35608		
25g Flex Tube	77377-52-7	35610		
TMCS (trimethylchlorosilane)				
10-pk. (10x1g)	75-77-4	35611		
25g Flex Tube	75-77-4	35612		

custom standards

Restek is your #1 source for custom analytical reference materials!

- Made to your exact specifications.
- · Quick quotations.
- Most orders shipped within 5-10 working days.

Call our reference materials department, use the form on page 427, or contact y

our Restek representative for more information.

Acylation Derivatization Reagents

- Most commonly used for Electron Capture Detection.
- · React with alcohols, amines and phenols.
- Frequently used for drugs of abuse confirmation.

Acylation reagents offer the same types of advantages available from silylation reagents: creating less polar, more volatile derivatives. In comparison to silylating reagents, the acylating reagents can more readily target highly polar multi-functional compounds, such as carbohydrates and amino acids. In addition, acylating reagents offer the distinct advantage of introducing electron-capturing groups, thus enhancing detectability during analysis.

Compound	CAS#	cat.#		
MBTFA (N-methyl-bis-triflu	ioroacetamide)			
10-pk. (10x1g)	685-27-8	35616		
25g Flex Tube	685-27-8	35617		
TFAA (trifluoroacetic acid	anydride)			
10-pk. (10x1g)	407-25-0	35618		
25g Flex Tube	407-25-0	35619		
PFAA (pentafluoropropioni	c acid anhydride)			
10-pk. (10x1g)	356-42-3	35620		
25g Flex Tube	356-42-3	35621		
HFAA (heptafluorobutyric acid anydride)				
10-pk. (10x1g)	336-59-4	35622		
25g Flex Tube	336-59-4	35623		
PFPOH (pentafluoropropai	nol)			
28gpk16X 90gB)	422-05-9	35829		

Alkylation Derivatization Reagents

- Adds alkyl groups to functional hydrogens (H).
- Decreases polarity on compounds containing acidic hydrogens, i.e., phenols, carboxylic acids.
- · Forms an ester.

Alkylation reagents reduce molecular polarity by replacing active hydrogens, such as carboxylic acids and phenols. Alkylation reagents can be used alone to form esters and amides or they can be used in conjunction with acylation or silylation reagents. A two-step approach is commonly used in the derivatization of amino acids, where multiple functional groups of these compounds may necessitate protection during derivatization.

Esterification is the reaction of an acid with an alcohol in the presence of a catalyst. It is the most popular method of alkylation due to the availability of reagents and ease of use. Alkyl esters are stable, and can be formed quickly and quantitatively. Retention of the derivative can be varied by altering the length of the substituted alkyl group. In addition to the formation of simple esters, alkylation reagents can be used in extraction procedures where biological matrices are present.

Compound	CAS#	cat.#	
TMPAH			
10-pk. (10x1g)	1899-02-1	35614	
25g Flex Tube	1899-02-1	35615	

