CATALYTIC COMBUSTION IONIZATION

DET introduces a GC detection method that selectively ionizes Methylene (CH₂) groups in Petroleum, Biofuel, and FAME samples

Principle of Detection

Fuel compounds elute sequentially from a GC column into a detector gas environment containing Oxygen. Compounds containing a sufficiently high concentration of CH₂ groups ignite a momentary burst of flame ionization as they impact a heated, catalytically active ceramic surface.

<u>Important Consequences of this Chemical Detection</u>

- 1. Demonstrates that high temperature oxidation of CH₂ groups is a primary process contributing to combustion ignition of Petroleum, Biofuel, and FAME constituents.
- 2. The temperature required for ignition of fuel combustion is lowered with increased catalytic activity of the ceramic.
- 3. GC chromatograms of different fuel samples provide fingerprint patterns showing the most combustible components of each sample.
- 4. Compounds with saturated Carbon bonds ignite in combustion more easily than compounds with Carbon double bonds.
- 5. Aromatic Hydrocarbon compounds are NOT easily ignited in combustion by this technique.

